Abstract:Backdoors and backbones of Boolean formulas are hidden structural properties. A natural goal, already in part realized, is that solver algorithms seek to obtain substantially better performance by exploiting these structures. However, the present paper is not intended to improve the performance of SAT solvers, but rather is a cautionary paper. In particular, the theme of this paper is that there is a potential chasm between the existence of such structures in the Boolean formula and being able to effectively exploit them. This does not mean that these structures are not useful to solvers. It does mean that one must be very careful not to assume that it is computationally easy to go from the existence of a structure to being able to get one's hands on it and/or being able to exploit the structure. For example, in this paper we show that, under the assumption that P $\neq$ NP, there are easily recognizable families of Boolean formulas with strong backdoors that are easy to find, yet for which it is hard (in fact, NP-complete) to determine whether the formulas are satisfiable. We also show that, also under the assumption P $\neq$ NP, there are easily recognizable sets of Boolean formulas for which it is hard (in fact, NP-complete) to determine whether they have a large backbone.
Abstract:In the context of SAT solvers, Shatter is a popular tool for symmetry breaking on CNF formulas. Nevertheless, little has been said about its use in the context of AllSAT problems: problems where we are interested in listing all the models of a Boolean formula. AllSAT has gained much popularity in recent years due to its many applications in domains like model checking, data mining, etc. One example of a particularly transparent application of AllSAT to other fields of computer science is computational Ramsey theory. In this paper we study the effect of incorporating Shatter to the workflow of using Boolean formulas to generate all possible edge colorings of a graph avoiding prescribed monochromatic subgraphs. Generating complete sets of colorings is an important building block in computational Ramsey theory. We identify two drawbacks in the na\"ive use of Shatter to break the symmetries of Boolean formulas encoding Ramsey-type problems for graphs: a "blow-up" in the number of models and the generation of incomplete sets of colorings. The issues presented in this work are not intended to discourage the use of Shatter as a preprocessing tool for AllSAT problems in combinatorial computing but to help researchers properly use this tool by avoiding these potential pitfalls. To this end, we provide strategies and additional tools to cope with the negative effects of using Shatter for AllSAT. While the specific application addressed in this paper is that of Ramsey-type problems, the analysis we carry out applies to many other areas in which highly-symmetrical Boolean formulas arise and we wish to find all of their models.
Abstract:A backbone of a boolean formula $F$ is a collection $S$ of its variables for which there is a unique partial assignment $a_S$ such that $F[a_S]$ is satisfiable [MZK+99,WGS03]. This paper studies the nontransparency of backbones. We show that, under the widely believed assumption that integer factoring is hard, there exist sets of boolean formulas that have obvious, nontrivial backbones yet finding the values, $a_S$, of those backbones is intractable. We also show that, under the same assumption, there exist sets of boolean formulas that obviously have large backbones yet producing such a backbone $S$ is intractable. Further, we show that if integer factoring is not merely worst-case hard but is frequently hard, as is widely believed, then the frequency of hardness in our two results is not too much less than that frequency.