Abstract:Historically, much of the research in understanding, modeling, and mining human trajectory data has focused on where an individual stays. Thus, the focus of existing research has been on where a user goes. On the other hand, the study of how a user moves between locations has great potential for new research opportunities. Kinematic features describe how an individual moves between locations and can be used for tasks such as identification of individuals or anomaly detection. Unfortunately, data availability and quality challenges make kinematic trajectory mining difficult. In this paper, we leverage the Geolife dataset of human trajectories to investigate the viability of using kinematic features to identify individuals and detect anomalies. We show that humans have an individual "kinematic profile" which can be used as a strong signal to identify individual humans. We experimentally show that, for the two use-cases of individual identification and anomaly detection, simple kinematic features fed to standard classification and anomaly detection algorithms significantly improve results.
Abstract:Human trajectory anomaly detection has become increasingly important across a wide range of applications, including security surveillance and public health. However, existing trajectory anomaly detection methods are primarily focused on vehicle-level traffic, while human-level trajectory anomaly detection remains under-explored. Since human trajectory data is often very sparse, machine learning methods have become the preferred approach for identifying complex patterns. However, concerns regarding potential biases and the robustness of these models have intensified the demand for more transparent and explainable alternatives. In response to these challenges, our research focuses on developing a lightweight anomaly detection model specifically designed to detect anomalies in human trajectories. We propose a Neural Collaborative Filtering approach to model and predict normal mobility. Our method is designed to model users' daily patterns of life without requiring prior knowledge, thereby enhancing performance in scenarios where data is sparse or incomplete, such as in cold start situations. Our algorithm consists of two main modules. The first is the collaborative filtering module, which applies collaborative filtering to model normal mobility of individual humans to places of interest. The second is the neural module, responsible for interpreting the complex spatio-temporal relationships inherent in human trajectory data. To validate our approach, we conducted extensive experiments using simulated and real-world datasets comparing to numerous state-of-the-art trajectory anomaly detection approaches.