PIXTA Vietnam, Hanoi, Vietnam, Hanoi University of Science and Technology, Ha Noi, Viet Nam
Abstract:In this work, we study the problem of unsupervised open-domain keyphrase generation, where the objective is a keyphrase generation model that can be built without using human-labeled data and can perform consistently across domains. To solve this problem, we propose a seq2seq model that consists of two modules, namely \textit{phraseness} and \textit{informativeness} module, both of which can be built in an unsupervised and open-domain fashion. The phraseness module generates phrases, while the informativeness module guides the generation towards those that represent the core concepts of the text. We thoroughly evaluate our proposed method using eight benchmark datasets from different domains. Results on in-domain datasets show that our approach achieves state-of-the-art results compared with existing unsupervised models, and overall narrows the gap between supervised and unsupervised methods down to about 16\%. Furthermore, we demonstrate that our model performs consistently across domains, as it overall surpasses the baselines on out-of-domain datasets.
Abstract:In this work, we study a new image annotation task named Extractive Tags Summarization (ETS). The goal is to extract important tags from the context lying in an image and its corresponding tags. We adjust some state-of-the-art deep learning models to utilize both visual and textual information. Our proposed solution consists of different widely used blocks like convolutional and self-attention layers, together with a novel idea of combining auxiliary loss functions and the gating mechanism to glue and elevate these fundamental components and form a unified architecture. Besides, we introduce a loss function that aims to reduce the imbalance of the training data and a simple but effective data augmentation technique dedicated to alleviates the effect of outliers on the final results. Last but not least, we explore an unsupervised pre-training strategy to further boost the performance of the model by making use of the abundant amount of available unlabeled data. Our model shows the good results as 90% $F_\text{1}$ score on the public NUS-WIDE benchmark, and 50% $F_\text{1}$ score on a noisy large-scale real-world private dataset. Source code for reproducing the experiments is publicly available at: https://github.com/pixta-dev/labteam