Abstract:Robot Operating System 2 (ROS 2) relies on the Data Distribution Service (DDS), which offers more than 20 Quality of Service (QoS) policies governing availability, reliability, and resource usage. Yet ROS 2 users lack clear guidance on safe policy combinations and validation processes prior to deployment, which often leads to trial-and-error tuning and unexpected runtime failures. To address these challenges, we analyze DDS Publisher-Subscriber communication over a life cycle divided into Discovery, Data Exchange, and Disassociation, and provide a user oriented tutorial explaining how 16 QoS policies operate in each phase. Building on this analysis, we derive a QoS dependency chain that formalizes inter-policy relationships and classifies 41 dependency violation rules, capturing constraints that commonly cause communication failures in practice. Finally, we introduce QoS Guard, a ROS 2 package that statically validates DDS XML profiles offline, flags conflicts, and enables safe, predeployment tuning without establishing a live ROS 2 session. Together, these contributions give ROS 2 users both conceptual insight and a concrete tool that enables early detection of misconfigurations, improving the reliability and resource efficiency of ROS 2 based robotic systems.
Abstract:Robot Operating System 2 (ROS 2) is now the de facto standard for robotic communication, pairing UDP transport with the Data Distribution Service (DDS) publish-subscribe middleware. DDS achieves reliability through periodic heartbeats that solicit acknowledgments for missing samples and trigger selective retransmissions. In lossy wireless networks, the tight coupling among heartbeat period, IP fragmentation, and retransmission interval obscures end to end latency behavior and leaves practitioners with little guidance on how to tune these parameters. To address these challenges, we propose a probabilistic latency analysis (PLA) that analytically models the reliable transmission process of ROS 2 DDS communication using a discrete state approach. By systematically analyzing both middleware level and transport level events, PLA computes the steady state probability distribution of unacknowledged messages and the retransmission latency. We validate our PLA across 270 scenarios, exploring variations in packet delivery ratios, message sizes, and both publishing and retransmission intervals, demonstrating a close alignment between analytical predictions and experimental results. Our findings establish a theoretical basis to systematically optimize reliability, latency, and performance in wireless industrial robotics.
Abstract:In smart manufacturing systems (SMSs), flexible job-shop scheduling with transportation constraints (FJSPT) is essential to optimize solutions for maximizing productivity, considering production flexibility based on automated guided vehicles (AGVs). Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge. These methods underperform when applied to environment at scales different from their training set, resulting in low-quality solutions. To address this, we introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS). Our method leverages locally extracted relational knowledge among operations, machines, and vehicle nodes for scheduling, with a graph-structured decision-making framework that reduces encoding complexity and enhances scale generalization. Our performance evaluation, conducted with benchmark datasets, reveals that the proposed method outperforms traditional dispatching rules, meta-heuristics, and existing DRL-based approaches in terms of makespan performance, even on large-scale instances that have not been experienced during training.
Abstract:A traffic monitoring system (TMS) is an integral part of Intelligent Transportation Systems (ITS) for traffic analysis and planning. This paper addresses the endemic cost issue of deploying a large number of TMSs to cover huge miles of two-lane rural highways (119,247 miles in U.S.). A low-cost and portable TMS called DeepWiTraffic based on COTs WiFi devices and deep learning is proposed. DeepWiTraffic enables accurate vehicle detection and classification by exploiting the unique WiFi Channel State Information (CSI) of passing vehicles. Spatial and temporal correlations of preprocessed CSI amplitude and phase data are identified and analyzed using deep learning to classify vehicles into five different types: motorcycle, passenger vehicle, SUV, pickup truck, and large truck. A large amount of CSI data of passing vehicles and the corresponding ground truth video data are collected for about 120 hours to validate the effectiveness of DeepWiTraffic. The results show that the average detection accuracy of 99.4%, and the average classification accuracy of 91.1% (Motorcycle: 97.2%, Passenger Car: 91.1%, SUV:83.8%, Pickup Truck: 83.3%, and Large Truck: 99.7%) are achieved at a very small cost of about $1,000.