Abstract:This study investigated the use of forearm EMG data for distinguishing eight hand gestures, employing the Neural Network and Random Forest algorithms on data from ten participants. The Neural Network achieved 97 percent accuracy with 1000-millisecond windows, while the Random Forest achieved 85 percent accuracy with 200-millisecond windows. Larger window sizes improved gesture classification due to increased temporal resolution. The Random Forest exhibited faster processing at 92 milliseconds, compared to the Neural Network's 124 milliseconds. In conclusion, the study identified a Neural Network with a 1000-millisecond stream as the most accurate (97 percent), and a Random Forest with a 200-millisecond stream as the most efficient (85 percent). Future research should focus on increasing sample size, incorporating more hand gestures, and exploring different feature extraction methods and modeling algorithms to enhance system accuracy and efficiency.
Abstract:This study aimed to analyze brain activity during various STEM activities, exploring the feasibility of classifying between different tasks. EEG brain data from twenty subjects engaged in five cognitive tasks were collected and segmented into 4-second clips. Power spectral densities of brain frequency waves were then analyzed. Testing different k-intervals with XGBoost, Random Forest, and Bagging Classifier revealed that Random Forest performed best, achieving a testing accuracy of 91.07% at an interval size of two. When utilizing all four EEG channels, cognitive flexibility was most recognizable. Task-specific classification accuracy showed the right frontal lobe excelled in mathematical processing and planning, the left frontal lobe in cognitive flexibility and mental flexibility, and the left temporoparietal lobe in connections. Notably, numerous connections between frontal and temporoparietal lobes were observed during STEM activities. This study contributes to a deeper understanding of implementing machine learning in analyzing brain activity and sheds light on the brain's mechanisms.
Abstract:During the past decade, metal additive manufacturing (MAM) has experienced significant developments and gained much attention due to its ability to fabricate complex parts, manufacture products with functionally graded materials, minimize waste, and enable low-cost customization. Despite these advantages, predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes. Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics. In this study, we introduce a hybrid approach which involves utilizing the data provided by a calibrated multi-physics computational fluid dynamic (CFD) model and experimental research for preparing the essential big dataset, and then uses a comprehensive framework consisting of various ML models to predict and understand clad characteristics. We first compile an extensive dataset by fusing experimental data into the data generated using the developed CFD model for this study. This dataset comprises critical clad characteristics, including geometrical features such as width, height, and depth, labels identifying clad quality, and processing parameters. Second, we use two sets of processing parameters for training the ML models: machine setting parameters and physics-aware parameters, along with versatile ML models and reliable evaluation metrics to create a comprehensive and scalable learning framework for predicting clad geometry and quality. This framework can serve as a basis for clad characteristics control and process optimization. The framework resolves many challenges of conventional modeling methods in MAM by solving t the issue of data scarcity using a hybrid approach and introducing an efficient, accurate, and scalable platform for clad characteristics prediction and optimization.