Abstract:While the use of machine learning for the detection of propaganda techniques in text has garnered considerable attention, most approaches focus on "black-box" solutions with opaque inner workings. Interpretable approaches provide a solution, however, they depend on careful feature engineering and costly expert annotated data. Additionally, language features specific to propagandistic text are generally the focus of rhetoricians or linguists, and there is no data set labeled with such features suitable for machine learning. This study codifies 22 rhetorical and linguistic features identified in literature related to the language of persuasion for the purpose of annotating an existing data set labeled with propaganda techniques. To help human experts annotate natural language sentences with these features, RhetAnn, a web application, was specifically designed to minimize an otherwise considerable mental effort. Finally, a small set of annotated data was used to fine-tune GPT-3.5, a generative large language model (LLM), to annotate the remaining data while optimizing for financial cost and classification accuracy. This study demonstrates how combining a small number of human annotated examples with GPT can be an effective strategy for scaling the annotation process at a fraction of the cost of traditional annotation relying solely on human experts. The results are on par with the best performing model at the time of writing, namely GPT-4, at 10x less the cost. Our contribution is a set of features, their properties, definitions, and examples in a machine-readable format, along with the code for RhetAnn and the GPT prompts and fine-tuning procedures for advancing state-of-the-art interpretable propaganda technique detection.
Abstract:Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, challenges and future directions, and aim to answer the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher promise scores. We find that knowledge encoded in relational structures and explicit reasoning tend to lead to more NeSy goals being satisfied. We also advocate for a more methodical approach to the application of theories of reasoning, which we hope can reduce some of the friction between the symbolic and sub-symbolic schools of AI.