Abstract:Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hardbrakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.
Abstract:This paper presents a novel problem for discovering the similar trajectories based on the field of view (FoV) of the video data. The problem is important for many societal applications such as grouping moving objects, classifying geo-images, and identifying the interesting trajectory patterns. Prior work consider only either spatial locations or spatial relationship between two line-segments. However, these approaches show a limitation to find the similar moving objects with common views. In this paper, we propose new algorithm that can group both spatial locations and points of view to identify similar trajectories. We also propose novel methods that reduce the computational cost for the proposed work. Experimental results using real-world datasets demonstrates that the proposed approach outperforms prior work and reduces the computational cost.