Abstract:Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hardbrakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.
Abstract:Driving is a complex daily activity indicating age and disease related cognitive declines. Therefore, deficits in driving performance compared with ones without mild cognitive impairment (MCI) can reflect changes in cognitive functioning. There is increasing evidence that unobtrusive monitoring of older adults driving performance in a daily-life setting may allow us to detect subtle early changes in cognition. The objectives of this paper include designing low-cost in-vehicle sensing hardware capable of obtaining high-precision positioning and telematics data, identifying important indicators for early changes in cognition, and detecting early-warning signs of cognitive impairment in a truly normal, day-to-day driving condition with machine learning approaches. Our statistical analysis comparing drivers with MCI to those without reveals that those with MCI exhibit smoother and safer driving patterns. This suggests that drivers with MCI are cognizant of their condition and tend to avoid erratic driving behaviors. Furthermore, our Random Forest models identified the number of night trips, number of trips, and education as the most influential factors in our data evaluation.
Abstract:In-vehicle sensing technology has gained tremendous attention due to its ability to support major technological developments, such as connected vehicles and self-driving cars. In-vehicle sensing data are invaluable and important data sources for traffic management systems. In this paper we propose an innovative architecture of unobtrusive in-vehicle sensors and present methods and tools that are used to measure the behavior of drivers. The proposed architecture including methods and tools are used in our NIH project to monitor and identify older drivers with early dementia
Abstract:In this paper, deep-learning-based approaches namely fine-tuning of pretrained convolutional neural networks (VGG16 and VGG19), and end-to-end training of a developed CNN model, have been used in order to classify X-Ray images into four different classes that include COVID-19, normal, opacity and pneumonia cases. A dataset containing more than 20,000 X-ray scans was retrieved from Kaggle and used in this experiment. A two-stage classification approach was implemented to be compared to the one-shot classification approach. Our hypothesis was that a two-stage model will be able to achieve better performance than a one-shot model. Our results show otherwise as VGG16 achieved 95% accuracy using one-shot approach over 5-fold of training. Future work will focus on a more robust implementation of the two-stage classification model Covid-TSC. The main improvement will be allowing data to flow from the output of stage-1 to the input of stage-2, where stage-1 and stage-2 models are VGG16 models fine-tuned on the Covid-19 dataset.