Abstract:Inland waterways are critical for freight movement, but limited means exist for monitoring their performance and usage by freight-carrying vessels, e.g., barges. While methods to track vessels, e.g., tug and tow boats, are publicly available through Automatic Identification Systems (AIS), ways to track freight tonnages and commodity flows carried on barges along these critical marine highways are non-existent, especially in real-time settings. This paper develops a method to detect barge traffic on inland waterways using existing traffic cameras with opportune viewing angles. Deep learning models, specifically, You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and EfficientDet are employed. The model detects the presence of vessels and/or barges from video and performs a classification (no vessel or barge, vessel without barge, vessel with barge, and barge). A dataset of 331 annotated images was collected from five existing traffic cameras along the Mississippi and Ohio Rivers for model development. YOLOv8 achieves an F1-score of 96%, outperforming YOLOv5, SSD, and EfficientDet models with 86%, 79%, and 77% respectively. Sensitivity analysis was carried out regarding weather conditions (fog and rain) and location (Mississippi and Ohio rivers). A background subtraction technique was used to normalize video images across the various locations for the location sensitivity analysis. This model can be used to detect the presence of barges along river segments, which can be used for anonymous bulk commodity tracking and monitoring. Such data is valuable for long-range transportation planning efforts carried out by public transportation agencies, in addition to operational and maintenance planning conducted by federal agencies such as the US Army Corp of Engineers.
Abstract:The proper enforcement of motorcycle helmet regulations is crucial for ensuring the safety of motorbike passengers and riders, as roadway cyclists and passengers are not likely to abide by these regulations if no proper enforcement systems are instituted. This paper presents the development and evaluation of a real-time YOLOv5 Deep Learning (DL) model for detecting riders and passengers on motorbikes, identifying whether the detected person is wearing a helmet. We trained the model on 100 videos recorded at 10 fps, each for 20 seconds. Our study demonstrated the applicability of DL models to accurately detect helmet regulation violators even in challenging lighting and weather conditions. We employed several data augmentation techniques in the study to ensure the training data is diverse enough to help build a robust model. The proposed model was tested on 100 test videos and produced an mAP score of 0.5267, ranking 11th on the AI City Track 5 public leaderboard. The use of deep learning techniques for image classification tasks, such as identifying helmet-wearing riders, has enormous potential for improving road safety. The study shows the potential of deep learning models for application in smart cities and enforcing traffic regulations and can be deployed in real-time for city-wide monitoring.