Abstract:The introduction of YOLOv9, the latest version of the You Only Look Once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer-assisted diagnosis (CAD) to help radiologists and surgeons to interpret X-ray images. Specifically, this paper trained the model on the GRAZPEDWRI-DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50-95 of the current state-of-the-art (SOTA) model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9-Fracture-Detection.
Abstract:Wrist trauma and even fractures occur frequently in daily life, particularly among children who account for a significant proportion of fracture cases. Before performing surgery, surgeons often request patients to undergo X-ray imaging first and prepare for it based on the analysis of the radiologist. With the development of neural networks, You Only Look Once (YOLO) series models have been widely used in fracture detection as computer-assisted diagnosis (CAD). In 2023, Ultralytics presented the latest version of the YOLO models, which has been employed for detecting fractures across various parts of the body. Attention mechanism is one of the hottest methods to improve the model performance. This research work proposes YOLOv8-AM, which incorporates the attention mechanism into the original YOLOv8 architecture. Specifically, we respectively employ four attention modules, Convolutional Block Attention Module (CBAM), Global Attention Mechanism (GAM), Efficient Channel Attention (ECA), and Shuffle Attention (SA), to design the improved models and train them on GRAZPEDWRI-DX dataset. Experimental results demonstrate that the mean Average Precision at IoU 50 (mAP 50) of the YOLOv8-AM model based on ResBlock + CBAM (ResCBAM) increased from 63.6% to 65.8%, which achieves the state-of-the-art (SOTA) performance. Conversely, YOLOv8-AM model incorporating GAM obtains the mAP 50 value of 64.2%, which is not a satisfactory enhancement. Therefore, we combine ResBlock and GAM, introducing ResGAM to design another new YOLOv8-AM model, whose mAP 50 value is increased to 65.0%.