Abstract:Large Language Models (LLMs) are increasingly being used in learning environments to support teaching-be it as learning companions or as tutors. With our contribution, we aim to discuss the implications of the anthropomorphization of LLMs in learning environments on educational theory to build a foundation for more effective learning outcomes and understand their emotional impact on learners. According to the media equation, people tend to respond to media in the same way as they would respond to another person. A study conducted by the Georgia Institute of Technology showed that chatbots can be successfully implemented in learning environments. In this study, learners in selected online courses were unable to distinguish the chatbot from a "real" teacher. As LLM-based chatbots such as OpenAI's GPT series are increasingly used in educational tools, it is important to understand how the attribution processes to LLM-based chatbots in terms of anthropomorphization affect learners' emotions.
Abstract:In this paper we analyze features to classify human- and AI-generated text for English, French, German and Spanish and compare them across languages. We investigate two scenarios: (1) The detection of text generated by AI from scratch, and (2) the detection of text rephrased by AI. For training and testing the classifiers in this multilingual setting, we created a new text corpus covering 10 topics for each language. For the detection of AI-generated text, the combination of all proposed features performs best, indicating that our features are portable to other related languages: The F1-scores are close with 99% for Spanish, 98% for English, 97% for German and 95% for French. For the detection of AI-rephrased text, the systems with all features outperform systems with other features in many cases, but using only document features performs best for German (72%) and Spanish (86%) and only text vector features leads to best results for English (78%).
Abstract:Recently, generative AIs like ChatGPT have become available to the wide public. These tools can for instance be used by students to generate essays or whole theses. But how does a teacher know whether a text is written by a student or an AI? In our work, we explore traditional and new features to (1) detect text generated by AI from scratch and (2) text rephrased by AI. Since we found that classification is more difficult when the AI has been instructed to create the text in a way that a human would not recognize that it was generated by an AI, we also investigate this more advanced case. For our experiments, we produced a new text corpus covering 10 school topics. Our best systems to classify basic and advanced human-generated/AI-generated texts have F1-scores of over 96%. Our best systems for classifying basic and advanced human-generated/AI-rephrased texts have F1-scores of more than 78%. The systems use a combination of perplexity, semantic, list lookup, error-based, readability, AI feedback, and text vector features. Our results show that the new features substantially help to improve the performance of many classifiers. Our best basic text rephrasing detection system even outperforms GPTZero by 183.8% relative in F1-score.
Abstract:Empathy is often understood as the ability to share and understand another individual's state of mind or emotion. With the increasing use of chatbots in various domains, e.g., children seeking help with homework, individuals looking for medical advice, and people using the chatbot as a daily source of everyday companionship, the importance of empathy in human-computer interaction has become more apparent. Therefore, our study investigates the extent to which ChatGPT based on GPT-3.5 can exhibit empathetic responses and emotional expressions. We analyzed the following three aspects: (1) understanding and expressing emotions, (2) parallel emotional response, and (3) empathic personality. Thus, we not only evaluate ChatGPT on various empathy aspects and compare it with human behavior but also show a possible way to analyze the empathy of chatbots in general. Our results show, that in 91.7% of the cases, ChatGPT was able to correctly identify emotions and produces appropriate answers. In conversations, ChatGPT reacted with a parallel emotion in 70.7% of cases. The empathic capabilities of ChatGPT were evaluated using a set of five questionnaires covering different aspects of empathy. Even though the results indicate that the empathic abilities of ChatGPT are still below the average of healthy humans, the scores are better than those of people who have been diagnosed with Asperger syndrome / high-functioning autism.