Abstract:Electroencephalography (EEG) classification is a versatile and portable technique for building non-invasive Brain-computer Interfaces (BCI). However, the classifiers that decode cognitive states from EEG brain data perform poorly when tested on newer domains, such as tasks or individuals absent during model training. Researchers have recently used complex strategies like Model-agnostic meta-learning (MAML) for domain adaptation. Nevertheless, there is a need for an evaluation strategy to evaluate the fast adaptability of the models, as this characteristic is essential for real-life BCI applications for quick calibration. We used motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for the experiments. Datasets with EEG signals typically have fewer examples and higher time resolution. Even though batch-normalization is preferred for Convolutional Neural Networks (CNN), we empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps. In summary, the present work (i) proposes a simple strategy to evaluate fast adaptability, and (ii) empirically demonstrate fast adaptability across individuals as well as across tasks with simple transfer learning as compared to MAML approach.
Abstract:Decoding the human brain has been a hallmark of neuroscientists and Artificial Intelligence researchers alike. Reconstruction of visual images from brain Electroencephalography (EEG) signals has garnered a lot of interest due to its applications in brain-computer interfacing. This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations and subsequently utilize the learned representation for image generation and classification. We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures with supervised and contrastive learning methods. We have performed the zero-shot EEG classification task to support the generalizability claim further. We observed that a subject invariant linearly separable visual representation was learned using EEG data alone in an unimodal setting that gives better k-means accuracy as compared to a joint representation learning between EEG and images. Finally, we propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation, showcasing the potential for image reconstruction from EEG signals. Our proposed image synthesis method from EEG shows 62.9% and 36.13% inception score improvement on the EEGCVPR40 and the Thoughtviz datasets, which is better than state-of-the-art performance in GAN.