Abstract:This study investigates the relative impact of training data quality versus quantity on the performance of small language models (SLMs), utilizing the TinyStories dataset for empirical analysis. Analysis of dataset variations with respect to size (25% and 50% of the original size) and duplication (controlled rates of 25%, 50%, 75%, and 100%) were performed. Model performance was evaluated based on the validation loss, accuracy, and perplexity metrics. Results indicate training data quality plays a more significant role in the overall performance of SLMs, especially given scale of this experiment. Minimal duplication positively impacted model accuracy (+0.87% increase in accuracy at 25% duplication) without significantly increasing perplexity (+0.52% increase going from 0% to 25% duplication) but excessive duplication led to pronounced performance degradation (-40% drop in accuracy at 100% duplication). The implications of this exploration extend beyond just model performance; training large-scale models imposes significant financial and computational burdens, which can be prohibitive for organizations, individuals, and the public at large, especially in developing countries. Additionally, the energy consumption associated with large-scale training raises environmental concerns. Understanding the relative importance of data quality versus quantity could democratize AI technology, making advanced models more accessible and sustainable for all.
Abstract:With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.