Abstract:A generative AI architecture called bubbly flow generative adversarial networks (BF-GAN) is developed, designed to generate realistic and high-quality bubbly flow images through physically conditioned inputs, jg and jf. Initially, 52 sets of bubbly flow experiments under varying conditions are conducted to collect 140,000 bubbly flow images with physical labels of jg and jf for training data. A multi-scale loss function is then developed, incorporating mismatch loss and pixel loss to enhance the generative performance of BF-GAN further. Regarding evaluative metrics of generative AI, the BF-GAN has surpassed conventional GAN. Physically, key parameters of bubbly flow generated by BF-GAN are extracted and compared with measurement values and empirical correlations, validating BF-GAN's generative performance. The comparative analysis demonstrate that the BF-GAN can generate realistic and high-quality bubbly flow images with any given jg and jf within the research scope. BF-GAN offers a generative AI solution for two-phase flow research, substantially lowering the time and cost required to obtain high-quality data. In addition, it can function as a benchmark dataset generator for bubbly flow detection and segmentation algorithms, enhancing overall productivity in this research domain. The BF-GAN model is available online (https://github.com/zhouzhouwen/BF-GAN).