Abstract:Multi-parametric MRI (mpMRI) studies are widely available in clinical practice for the diagnosis of various diseases. As the volume of mpMRI exams increases yearly, there are concomitant inaccuracies that exist within the DICOM header fields of these exams. This precludes the use of the header information for the arrangement of the different series as part of the radiologist's hanging protocol, and clinician oversight is needed for correction. In this pilot work, we propose an automated framework to classify the type of 8 different series in mpMRI studies. We used 1,363 studies acquired by three Siemens scanners to train a DenseNet-121 model with 5-fold cross-validation. Then, we evaluated the performance of the DenseNet-121 ensemble on a held-out test set of 313 mpMRI studies. Our method achieved an average precision of 96.6%, sensitivity of 96.6%, specificity of 99.6%, and F1 score of 96.6% for the MRI series classification task. To the best of our knowledge, we are the first to develop a method to classify the series type in mpMRI studies acquired at the level of the chest, abdomen, and pelvis. Our method has the capability for robust automation of hanging protocols in modern radiology practice.
Abstract:Multi-parametric MRI of the body is routinely acquired for the identification of abnormalities and diagnosis of diseases. However, a standard naming convention for the MRI protocols and associated sequences does not exist due to wide variations in imaging practice at institutions and myriad MRI scanners from various manufacturers being used for imaging. The intensity distributions of MRI sequences differ widely as a result, and there also exists information conflicts related to the sequence type in the DICOM headers. At present, clinician oversight is necessary to ensure that the correct sequence is being read and used for diagnosis. This poses a challenge when specific series need to be considered for building a cohort for a large clinical study or for developing AI algorithms. In order to reduce clinician oversight and ensure the validity of the DICOM headers, we propose an automated method to classify the 3D MRI sequence acquired at the levels of the chest, abdomen, and pelvis. In our pilot work, our 3D DenseNet-121 model achieved an F1 score of 99.5% at differentiating 5 common MRI sequences obtained by three Siemens scanners (Aera, Verio, Biograph mMR). To the best of our knowledge, we are the first to develop an automated method for the 3D classification of MRI sequences in the chest, abdomen, and pelvis, and our work has outperformed the previous state-of-the-art MRI series classifiers.