Abstract:A human-shaped robotic hand offers unparalleled versatility and fine motor skills, enabling it to perform a broad spectrum of tasks with precision, power and robustness. Across the paleontological record and animal kingdom we see a wide range of alternative hand and actuation designs. Understanding the morphological design space and the resulting emergent behaviors can not only aid our understanding of dexterous manipulation and its evolution, but also assist design optimization, achieving, and eventually surpassing human capabilities. Exploration of hand embodiment has to date been limited by inaccessibility of customizable hands in the real-world, and by the reality gap in simulation of complex interactions. We introduce an open parametric design which integrates techniques for simplified customization, fabrication, and control with design features to maximize behavioral diversity. Non-linear rolling joints, anatomical tendon routing, and a low degree-of-freedom, modulating, actuation system, enable rapid production of single-piece 3D printable hands without compromising dexterous behaviors. To demonstrate this, we evaluated the design's low-level behavior range and stability, showing variable stiffness over two orders of magnitude. Additionally, we fabricated three hand designs: human, mirrored human with two thumbs, and aye-aye hands. Manipulation tests evaluate the variation in each hand's proficiency at handling diverse objects, and demonstrate emergent behaviors unique to each design. Overall, we shed light on new possible designs for robotic hands, provide a design space to compare and contrast different hand morphologies and structures, and share a practical and open-source design for exploring embodied manipulation.
Abstract:Robotic assistance has significantly improved the outcomes of open microsurgery and rigid endoscopic surgery, however is yet to make an impact in flexible endoscopic neurosurgery. Some of the most common intracranial procedures for treatment of hydrocephalus and tumors stand to benefit from increased dexterity and reduced invasiveness offered by robotic systems that can navigate in the deep ventricular system of the brain. We review a spectrum of flexible robotic devices, from the traditional highly actuated approach, to more novel and bio-inspired mechanisms for safe navigation. For each technology, we identify the operating principle and are able to evaluate the potential for minimally invasive surgical applications. Overall, rigid-type continuum robots have seen the most development, however, approaches combining rigid and soft robotic principles into innovative devices, are ideally situated to address safety and complexity limitations after future design evolution. We also observe a number of related challenges in the field, from surgeon-robot interfaces to robot evaluation procedures. Fundamentally, the challenges revolve around a guarantee of safety in robotic devices with the prerequisites to assist and improve upon surgical tasks. With innovative designs, materials and evaluation techniques emerging, we see potential impacts in the next 5--10 years.