Abstract:Facial Expression Recognition (FER) is a machine learning problem that deals with recognizing human facial expressions. While existing work has achieved performance improvements in recent years, FER in the wild and under challenging conditions remains a challenge. In this paper, a lightweight patch and attention network based on MobileNetV1, referred to as PAtt-Lite, is proposed to improve FER performance under challenging conditions. A truncated ImageNet-pre-trained MobileNetV1 is utilized as the backbone feature extractor of the proposed method. In place of the truncated layers is a patch extraction block that is proposed for extracting significant local facial features to enhance the representation from MobileNetV1, especially under challenging conditions. An attention classifier is also proposed to improve the learning of these patched feature maps from the extremely lightweight feature extractor. The experimental results on public benchmark databases proved the effectiveness of the proposed method. PAtt-Lite achieved state-of-the-art results on CK+, RAF-DB, FER2013, FERPlus, and the challenging conditions subsets for RAF-DB and FERPlus. The source code for the proposed method will be available at https://github.com/JLREx/PAtt-Lite.
Abstract:Visual representation is crucial for a visual tracking method's performances. Conventionally, visual representations adopted in visual tracking rely on hand-crafted computer vision descriptors. These descriptors were developed generically without considering tracking-specific information. In this paper, we propose to learn complex-valued invariant representations from tracked sequential image patches, via strong temporal slowness constraint and stacked convolutional autoencoders. The deep slow local representations are learned offline on unlabeled data and transferred to the observational model of our proposed tracker. The proposed observational model retains old training samples to alleviate drift, and collect negative samples which are coherent with target's motion pattern for better discriminative tracking. With the learned representation and online training samples, a logistic regression classifier is adopted to distinguish target from background, and retrained online to adapt to appearance changes. Subsequently, the observational model is integrated into a particle filter framework to peform visual tracking. Experimental results on various challenging benchmark sequences demonstrate that the proposed tracker performs favourably against several state-of-the-art trackers.