Abstract:As digital healthcare evolves, the security of electronic health records (EHR) becomes increasingly crucial. This study presents the GPT-Onto-CAABAC framework, integrating Generative Pretrained Transformer (GPT), medical-legal ontologies and Context-Aware Attribute-Based Access Control (CAABAC) to enhance EHR access security. Unlike traditional models, GPT-Onto-CAABAC dynamically interprets policies and adapts to changing healthcare and legal environments, offering customized access control solutions. Through empirical evaluation, this framework is shown to be effective in improving EHR security by accurately aligning access decisions with complex regulatory and situational requirements. The findings suggest its broader applicability in sectors where access control must meet stringent compliance and adaptability standards.
Abstract:There has been a significant increase in the adoption of technology in cricket recently. This trend has created the problem of duplicate work being done in similar computer vision-based research works. Our research tries to solve one of these problems by segmenting ball deliveries in a cricket broadcast using deep learning models, MobileNet and YOLO, thus enabling researchers to use our work as a dataset for their research. The output from our research can be used by cricket coaches and players to analyze ball deliveries which are played during the match. This paper presents an approach to segment and extract video shots in which only the ball is being delivered. The video shots are a series of continuous frames that make up the whole scene of the video. Object detection models are applied to reach a high level of accuracy in terms of correctly extracting video shots. The proof of concept for building large datasets of video shots for ball deliveries is proposed which paves the way for further processing on those shots for the extraction of semantics. Ball tracking in these video shots is also done using a separate RetinaNet model as a sample of the usefulness of the proposed dataset. The position on the cricket pitch where the ball lands is also extracted by tracking the ball along the y-axis. The video shot is then classified as a full-pitched, good-length or short-pitched delivery.