Abstract:Unmanned Aerial Vehicles (UAVs) have become increasingly popular in various applications, especially with the emergence of 6G systems and networks. However, their widespread adoption has also led to concerns regarding security vulnerabilities, making the development of reliable intrusion detection systems (IDS) essential for ensuring UAVs safety and mission success. This paper presents a new IDS for UAV networks. A binary-tuple representation was used for encoding class labels, along with a deep learning-based approach employed for classification. The proposed system enhances the intrusion detection by capturing complex class relationships and temporal network patterns. Moreover, a cross-correlation study between common features of different UAVs was conducted to discard correlated features that might mislead the classification of the proposed IDS. The full study was carried out using the UAV-IDS-2020 dataset, and we assessed the performance of the proposed IDS using different evaluation metrics. The experimental results highlighted the effectiveness of the proposed multiclass classifier model with an accuracy of 95%.
Abstract:A resource-constrained unmanned aerial vehicle (UAV) can be used as a flying LoRa gateway (GW) to move inside the target area for efficient data collection and LoRa resource management. In this work, we propose deep reinforcement learning (DRL) to optimize the energy efficiency (EE) in wireless LoRa networks composed of LoRa end devices (EDs) and a flying GW to extend the network lifetime. The trained DRL agent can efficiently allocate the spreading factors (SFs) and transmission powers (TPs) to EDs while considering the air-to-ground wireless link and the availability of SFs. In addition, we allow the flying GW to adjust its optimal policy onboard and perform online resource allocation. This is accomplished through retraining the DRL agent using reduced action space. Simulation results demonstrate that our proposed DRL-based online resource allocation scheme can achieve higher EE in LoRa networks over three benchmark schemes.