Abstract:We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, ``The American Economic Review'', 84(2): 406--411 (1994), D. Challet and Y.C. Zhang, ``Physica A'', 256:514 (1998)). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not ``work at cross purposes'', in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.
Abstract:We consider the problem of how to design large decentralized multi-agent systems (MAS's) in an automated fashion, with little or no hand-tuning. Our approach has each agent run a reinforcement learning algorithm. This converts the problem into one of how to automatically set/update the reward functions for each of the agents so that the global goal is achieved. In particular we do not want the agents to ``work at cross-purposes'' as far as the global goal is concerned. We use the term artificial COllective INtelligence (COIN) to refer to systems that embody solutions to this problem. In this paper we present a summary of a mathematical framework for COINs. We then investigate the real-world applicability of the core concepts of that framework via two computer experiments: we show that our COINs perform near optimally in a difficult variant of Arthur's bar problem (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance for our COINs in the leader-follower problem.