Abstract:Deep learning has been shown to be useful to detect breast cancer metastases by analyzing whole slide images of sentinel lymph nodes. However, it requires extensive scanning and analysis of all the lymph nodes slides for each case. Our deep learning study focuses on breast cancer screening with only a small set of image patches from any sentinel lymph node, positive or negative for metastasis, to detect changes in tumor environment and not in the tumor itself. We design a convolutional neural network in the Python language to build a diagnostic model for this purpose. The excellent results from this preliminary study provided a proof of concept for incorporating automated metastatic screen into the digital pathology workflow to augment the pathologists' productivity. Our approach is unique since it provides a very rapid screen rather than an exhaustive search for tumor in all fields of all sentinel lymph nodes.
Abstract:Global optimization of aerodynamic shapes usually requires a large number of expensive computational fluid dynamics simulations because of the high dimensionality of the design space. One approach to combat this problem is to reduce the design space dimension by obtaining a new representation. This requires a parametric function that compactly and sufficiently describes useful variation in shapes. We propose a deep generative model, B\'ezier-GAN, to parameterize aerodynamic designs by learning from shape variations in an existing database. The resulted new parameterization can accelerate design optimization convergence by improving the representation compactness while maintaining sufficient representation capacity. We use the airfoil design as an example to demonstrate the idea and analyze B\'ezier-GAN's representation capacity and compactness. Results show that B\'ezier-GAN both (1) learns smooth and realistic shape representations for a wide range of airfoils and (2) empirically accelerates optimization convergence by at least two times compared to state-of-the-art parameterization methods.