Abstract:Deep neural networks (DNNs) are ubiquitous in computer vision and natural language processing, but suffer from high inference cost. This problem can be addressed by quantization, which consists in converting floating point perations into a lower bit-width format. With the growing concerns on privacy rights, we focus our efforts on data-free methods. However, such techniques suffer from their lack of adaptability to the target devices, as a hardware typically only support specific bit widths. Thus, to adapt to a variety of devices, a quantization method shall be flexible enough to find good accuracy v.s. speed trade-offs for every bit width and target device. To achieve this, we propose PIPE, a quantization method that leverages residual error expansion, along with group sparsity and an ensemble approximation for better parallelization. PIPE is backed off by strong theoretical guarantees and achieves superior performance on every benchmarked application (from vision to NLP tasks), architecture (ConvNets, transformers) and bit-width (from int8 to ternary quantization).
Abstract:Deep neural networks (DNNs) have become ubiquitous in addressing a number of problems, particularly in computer vision. However, DNN inference is computationally intensive, which can be prohibitive e.g. when considering edge devices. To solve this problem, a popular solution is DNN pruning, and more so structured pruning, where coherent computational blocks (e.g. channels for convolutional networks) are removed: as an exhaustive search of the space of pruned sub-models is intractable in practice, channels are typically removed iteratively based on an importance estimation heuristic. Recently, promising latency-aware pruning methods were proposed, where channels are removed until the network reaches a target budget of wall-clock latency pre-emptively estimated on specific hardware. In this paper, we present Archtree, a novel method for latency-driven structured pruning of DNNs. Archtree explores multiple candidate pruned sub-models in parallel in a tree-like fashion, allowing for a better exploration of the search space. Furthermore, it involves on-the-fly latency estimation on the target hardware, accounting for closer latencies as compared to the specified budget. Empirical results on several DNN architectures and target hardware show that Archtree better preserves the original model accuracy while better fitting the latency budget as compared to existing state-of-the-art methods.
Abstract:The massive interest in deep neural networks (DNNs) for both computer vision and natural language processing has been sparked by the growth in computational power. However, this led to an increase in the memory footprint, to a point where it can be challenging to simply load a model on commodity devices such as mobile phones. To address this limitation, quantization is a favored solution as it maps high precision tensors to a low precision, memory efficient format. In terms of memory footprint reduction, its most effective variants are based on codebooks. These methods, however, suffer from two limitations. First, they either define a single codebook for each tensor, or use a memory-expensive mapping to multiple codebooks. Second, gradient descent optimization of the mapping favors jumps toward extreme values, hence not defining a proximal search. In this work, we propose to address these two limitations. First, we initially group similarly distributed neurons and leverage the re-ordered structure to either apply different scale factors to the different groups, or map weights that fall in these groups to several codebooks, without any mapping overhead. Second, stemming from this initialization, we propose a joint learning of the codebook and weight mappings that bears similarities with recent gradient-based post-training quantization techniques. Third, drawing estimation from straight-through estimation techniques, we introduce a novel gradient update definition to enable a proximal search of the codebooks and their mappings. The proposed jointly learnable codebooks and mappings (JLCM) method allows a very efficient approximation of any DNN: as such, a Llama 7B can be compressed down to 2Go and loaded on 5-year-old smartphones.
Abstract:Class-Incremental learning (CIL) is the ability of artificial agents to accommodate new classes as they appear in a stream. It is particularly interesting in evolving environments where agents have limited access to memory and computational resources. The main challenge of class-incremental learning is catastrophic forgetting, the inability of neural networks to retain past knowledge when learning a new one. Unfortunately, most existing class-incremental object detectors are applied to two-stage algorithms such as Faster-RCNN and rely on rehearsal memory to retain past knowledge. We believe that the current benchmarks are not realistic, and more effort should be dedicated to anchor-free and rehearsal-free object detection. In this context, we propose MultIOD, a class-incremental object detector based on CenterNet. Our main contributions are: (1) we propose a multihead feature pyramid and multihead detection architecture to efficiently separate class representations, (2) we employ transfer learning between classes learned initially and those learned incrementally to tackle catastrophic forgetting, and (3) we use a class-wise non-max-suppression as a post-processing technique to remove redundant boxes. Without bells and whistles, our method outperforms a range of state-of-the-art methods on two Pascal VOC datasets.
Abstract:Quantization has become a crucial step for the efficient deployment of deep neural networks, where floating point operations are converted to simpler fixed point operations. In its most naive form, it simply consists in a combination of scaling and rounding transformations, leading to either a limited compression rate or a significant accuracy drop. Recently, Gradient-based post-training quantization (GPTQ) methods appears to be constitute a suitable trade-off between such simple methods and more powerful, yet expensive Quantization-Aware Training (QAT) approaches, particularly when attempting to quantize LLMs, where scalability of the quantization process is of paramount importance. GPTQ essentially consists in learning the rounding operation using a small calibration set. In this work, we challenge common choices in GPTQ methods. In particular, we show that the process is, to a certain extent, robust to a number of variables (weight selection, feature augmentation, choice of calibration set). More importantly, we derive a number of best practices for designing more efficient and scalable GPTQ methods, regarding the problem formulation (loss, degrees of freedom, use of non-uniform quantization schemes) or optimization process (choice of variable and optimizer). Lastly, we propose a novel importance-based mixed-precision technique. Those guidelines lead to significant performance improvements on all the tested state-of-the-art GPTQ methods and networks (e.g. +6.819 points on ViT for 4-bit quantization), paving the way for the design of scalable, yet effective quantization methods.
Abstract:Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
Abstract:Deep neural networks (DNNs) demonstrate outstanding performance across most computer vision tasks. Some critical applications, such as autonomous driving or medical imaging, also require investigation into their behavior and the reasons behind the decisions they make. In this vein, DNN attribution consists in studying the relationship between the predictions of a DNN and its inputs. Attribution methods have been adapted to highlight the most relevant weights or neurons in a DNN, allowing to more efficiently select which weights or neurons can be pruned. However, a limitation of these approaches is that weights are typically compared within each layer separately, while some layers might appear as more critical than others. In this work, we propose to investigate DNN layer importance, i.e. to estimate the sensitivity of the accuracy w.r.t. perturbations applied at the layer level. To do so, we propose a novel dataset to evaluate our method as well as future works. We benchmark a number of criteria and draw conclusions regarding how to assess DNN layer importance and, consequently, how to budgetize layers for increased DNN efficiency (with applications for DNN pruning and quantization), as well as robustness to hardware failure (e.g. bit swaps).
Abstract:Deep neural networks (DNNs) offer the highest performance in a wide range of applications in computer vision. These results rely on over-parameterized backbones, which are expensive to run. This computational burden can be dramatically reduced by quantizing (in either data-free (DFQ), post-training (PTQ) or quantization-aware training (QAT) scenarios) floating point values to ternary values (2 bits, with each weight taking value in {-1,0,1}). In this context, we observe that rounding to nearest minimizes the expected error given a uniform distribution and thus does not account for the skewness and kurtosis of the weight distribution, which strongly affects ternary quantization performance. This raises the following question: shall one minimize the highest or average quantization error? To answer this, we design two operators: TQuant and MQuant that correspond to these respective minimization tasks. We show experimentally that our approach allows to significantly improve the performance of ternary quantization through a variety of scenarios in DFQ, PTQ and QAT and give strong insights to pave the way for future research in deep neural network quantization.
Abstract:The rising performance of deep neural networks is often empirically attributed to an increase in the available computational power, which allows complex models to be trained upon large amounts of annotated data. However, increased model complexity leads to costly deployment of modern neural networks, while gathering such amounts of data requires huge costs to avoid label noise. In this work, we study the ability of compression methods to tackle both of these problems at once. We hypothesize that quantization-aware training, by restricting the expressivity of neural networks, behaves as a regularization. Thus, it may help fighting overfitting on noisy data while also allowing for the compression of the model at inference. We first validate this claim on a controlled test with manually introduced label noise. Furthermore, we also test the proposed method on Facial Action Unit detection, where labels are typically noisy due to the subtlety of the task. In all cases, our results suggests that quantization significantly improve the results compared with existing baselines, regularization as well as other compression methods.
Abstract:Action Unit (AU) detection aims at automatically caracterizing facial expressions with the muscular activations they involve. Its main interest is to provide a low-level face representation that can be used to assist higher level affective computing tasks learning. Yet, it is a challenging task. Indeed, the available databases display limited face variability and are imbalanced toward neutral expressions. Furthermore, as AU involve subtle face movements they are difficult to annotate so that some of the few provided datapoints may be mislabeled. In this work, we aim at exploiting label smoothing ability to mitigate noisy examples impact by reducing confidence [1]. However, applying label smoothing as it is may aggravate imbalance-based pre-existing under-confidence issue and degrade performance. To circumvent this issue, we propose Robin Hood Label Smoothing (RHLS). RHLS principle is to restrain label smoothing confidence reduction to the majority class. In that extent, it alleviates both the imbalance-based over-confidence issue and the negative impact of noisy majority class examples. From an experimental standpoint, we show that RHLS provides a free performance improvement in AU detection. In particular, by applying it on top of a modern multi-task baseline we get promising results on BP4D and outperform state-of-the-art methods on DISFA.