Abstract:Structure-based drug design uses three-dimensional geometric information of macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric deep learning, an emerging concept of neural-network-based machine learning, has been applied to macromolecular structures. This review provides an overview of the recent applications of geometric deep learning in bioorganic and medicinal chemistry, highlighting its potential for structure-based drug discovery and design. Emphasis is placed on molecular property prediction, ligand binding site and pose prediction, and structure-based de novo molecular design. The current challenges and opportunities are highlighted, and a forecast of the future of geometric deep learning for drug discovery is presented.
Abstract:Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.