Abstract:Model editing methods modify specific behaviors of Large Language Models by altering a small, targeted set of network weights and require very little data and compute. These methods can be used for malicious applications such as inserting misinformation or simple trojans that result in adversary-specified behaviors when a trigger word is present. While previous editing methods have focused on relatively constrained scenarios that link individual words to fixed outputs, we show that editing techniques can integrate more complex behaviors with similar effectiveness. We develop Concept-ROT, a model editing-based method that efficiently inserts trojans which not only exhibit complex output behaviors, but also trigger on high-level concepts -- presenting an entirely new class of trojan attacks. Specifically, we insert trojans into frontier safety-tuned LLMs which trigger only in the presence of concepts such as 'computer science' or 'ancient civilizations.' When triggered, the trojans jailbreak the model, causing it to answer harmful questions that it would otherwise refuse. Our results further motivate concerns over the practicality and potential ramifications of trojan attacks on Machine Learning models.
Abstract:Machine learning models are vulnerable to adversarial attacks, including attacks that leak information about the model's training data. There has recently been an increase in interest about how to best address privacy concerns, especially in the presence of data-removal requests. Machine unlearning algorithms aim to efficiently update trained models to comply with data deletion requests while maintaining performance and without having to resort to retraining the model from scratch, a costly endeavor. Several algorithms in the machine unlearning literature demonstrate some level of privacy gains, but they are often evaluated only on rudimentary membership inference attacks, which do not represent realistic threats. In this paper we describe and propose alternative evaluation methods for three key shortcomings in the current evaluation of unlearning algorithms. We show the utility of our alternative evaluations via a series of experiments of state-of-the-art unlearning algorithms on different computer vision datasets, presenting a more detailed picture of the state of the field.
Abstract:Interpretability techniques are valuable for helping humans understand and oversee AI systems. The SaTML 2024 CNN Interpretability Competition solicited novel methods for studying convolutional neural networks (CNNs) at the ImageNet scale. The objective of the competition was to help human crowd-workers identify trojans in CNNs. This report showcases the methods and results of four featured competition entries. It remains challenging to help humans reliably diagnose trojans via interpretability tools. However, the competition's entries have contributed new techniques and set a new record on the benchmark from Casper et al., 2023.