Abstract:We develop $(\epsilon,\delta)$-differentially private projection-depth-based medians using the propose-test-release (PTR) and exponential mechanisms. Under general conditions on the input parameters and the population measure, (e.g. we do not assume any moment bounds), we quantify the probability the test in PTR fails, as well as the cost of privacy via finite sample deviation bounds. We demonstrate our main result on the canonical projection-depth-based median. In the Gaussian setting, we show that the resulting deviation bound matches the known lower bound for private Gaussian mean estimation, up to a polynomial function of the condition number of the covariance matrix. In the Cauchy setting, we show that the ``outlier error amplification'' effect resulting from the heavy tails outweighs the cost of privacy. This result is then verified via numerical simulations. Additionally, we present results on general PTR mechanisms and a uniform concentration result on the projected spacings of order statistics.
Abstract:We prove concentration inequalities for the output of the exponential mechanism about the maximizer of the population objective function. This bound applies to objective functions that satisfy a mild regularity condition. To illustrate our result, we study the problem of differentially private multivariate median estimation. We present novel finite-sample performance guarantees for differentially private multivariate depth-based medians which are essentially sharp. Our results cover commonly used depth functions, such as the halfspace (or Tukey) depth, spatial depth, and the integrated dual depth. We show that under Cauchy marginals, the cost of heavy-tailed location estimation outweighs the cost of privacy. We demonstrate our results numerically using a Gaussian contamination model in dimensions up to $d = 100$, and compare them to a state-of-the-art private mean estimation algorithm.