Abstract:Conversational agents (CAs) represent an emerging research field in health information systems, where there are great potentials in empowering patients with timely information and natural language interfaces. Nevertheless, there have been limited attempts in establishing prescriptive knowledge on designing CAs in the healthcare domain in general, and diabetes care specifically. In this paper, we conducted a Design Science Research project and proposed three design principles for designing health-related CAs that embark on artificial intelligence (AI) to address the limitations of existing solutions. Further, we instantiated the proposed design and developed AMANDA - an AI-based multilingual CA in diabetes care with state-of-the-art technologies for natural-sounding localised accent. We employed mean opinion scores and system usability scale to evaluate AMANDA's speech quality and usability, respectively. This paper provides practitioners with a blueprint for designing CAs in diabetes care with concrete design guidelines that can be extended into other healthcare domains.
Abstract:With the rapid development in artificial intelligence, social computing has evolved beyond social informatics toward the birth of social intelligence systems. This paper, therefore, takes initiatives to propose a social behaviour understanding framework with the use of deep neural networks for social and behavioural analysis. The integration of information fusion, person and object detection, social signal understanding, behaviour understanding, and context understanding plays a harmonious role to elicit social behaviours. Three systems, including depression detection, activity recognition and cognitive impairment screening, are developed to evidently demonstrate the importance of social intelligence. The study considerably contributes to the cumulative development of social computing and health informatics. It also provides a number of implications for academic bodies, healthcare practitioners, and developers of socially intelligent agents.