Abstract:This paper presents a feasibility study, including simulations and prototype tests, on the autonomous operation of a multi-limbed intra-vehicular robot (mobile manipulator), shortly MLIVR, designed to assist astronauts with logistical tasks on the International Space Station (ISS). Astronauts spend significant time on tasks such as preparation, close-out, and the collection and transportation of goods, reducing the time available for critical mission activities. Our study explores the potential for a mobile manipulator to support these operations, emphasizing the need for autonomous functionality to minimize crew and ground operator effort while enabling real-time task execution. We focused on the robot's transportation capabilities, simulating its motion planning in 3D space. The actual motion execution was tested with a prototype on a 2D table to mimic a microgravity environment. The results demonstrate the feasibility of performing these tasks with minimal human intervention, offering a promising solution to enhance operational efficiency on the ISS.



Abstract:In developing mobile robots for exploration on the planetary surface, it is crucial to evaluate the robot's performance, demonstrating the harsh environment in which the robot will actually be deployed. Repeatable experiments in a controlled testing environment that can reproduce various terrain and gravitational conditions are essential. This paper presents the development of a minimal and space-saving indoor testbed, which can simulate steep slopes, uneven terrain, and lower gravity, employing a three-dimensional target tracking mechanism (active xy and passive z) with a counterweight.