Abstract:Clinical practice frequently uses medical imaging for diagnosis and treatment. A significant challenge for automatic radiology report generation is that the radiology reports are long narratives consisting of multiple sentences for both abnormal and normal findings. Therefore, applying conventional image captioning approaches to generate the whole report proves to be insufficient, as these are designed to briefly describe images with short sentences. We propose a template-based approach to generate radiology reports from radiographs. Our approach involves the following: i) using a multilabel image classifier, produce the tags for the input radiograph; ii) using a transformer-based model, generate pathological descriptions (a description of abnormal findings seen on radiographs) from the tags generated in step (i); iii) using a BERT-based multi-label text classifier, find the spans in the normal report template to replace with the generated pathological descriptions; and iv) using a rule-based system, replace the identified span with the generated pathological description. We performed experiments with the two most popular radiology report datasets, IU Chest X-ray and MIMIC-CXR and demonstrated that the BLEU-1, ROUGE-L, METEOR, and CIDEr scores are better than the State-of-the-Art models by 25%, 36%, 44% and 48% respectively, on the IU X-RAY dataset. To the best of our knowledge, this is the first attempt to generate chest X-ray radiology reports by first creating small sentences for abnormal findings and then replacing them in the normal report template.
Abstract:Conventionally, the radiologist prepares the diagnosis notes and shares them with the transcriptionist. Then the transcriptionist prepares a preliminary formatted report referring to the notes, and finally, the radiologist reviews the report, corrects the errors, and signs off. This workflow causes significant delays and errors in the report. In current research work, we focus on applications of NLP techniques like Information Extraction (IE) and domain-specific Knowledge Graph (KG) to automatically generate radiology reports from radiologist's dictation. This paper focuses on KG construction for each organ by extracting information from an existing large corpus of free-text radiology reports. We develop an information extraction pipeline that combines rule-based, pattern-based, and dictionary-based techniques with lexical-semantic features to extract entities and relations. Missing information in short dictation can be accessed from the KGs to generate pathological descriptions and hence the radiology report. Generated pathological descriptions evaluated using semantic similarity metrics, which shows 97% similarity with gold standard pathological descriptions. Also, our analysis shows that our IE module is performing better than the OpenIE tool for the radiology domain. Furthermore, we include a manual qualitative analysis from radiologists, which shows that 80-85% of the generated reports are correctly written, and the remaining are partially correct.