Abstract:Within heterogeneous treatment effect (HTE) analysis, various estimands have been proposed to capture the effect of a treatment conditional on covariates. Recently, the conditional quantile comparator (CQC) has emerged as a promising estimand, offering quantile-level summaries akin to the conditional quantile treatment effect (CQTE) while preserving some interpretability of the conditional average treatment effect (CATE). It achieves this by summarising the treated response conditional on both the covariates and the untreated response. Despite these desirable properties, the CQC's current estimation is limited by the need to first estimate the difference in conditional cumulative distribution functions and then invert it. This inversion obscures the CQC estimate, hampering our ability to both model and interpret it. To address this, we propose the first direct estimator of the CQC, allowing for explicit modelling and parameterisation. This explicit parameterisation enables better interpretation of our estimate while also providing a means to constrain and inform the model. We show, both theoretically and empirically, that our estimation error depends directly on the complexity of the CQC itself, improving upon the existing estimation procedure. Furthermore, it retains the desirable double robustness property with respect to nuisance parameter estimation. We further show our method to outperform existing procedures in estimation accuracy across multiple data scenarios while varying sample size and nuisance error. Finally, we apply it to real-world data from an employment scheme, uncovering a reduced range of potential earnings improvement as participant age increases.




Abstract:Conditional quantile treatment effect (CQTE) can provide insight into the effect of a treatment beyond the conditional average treatment effect (CATE). This ability to provide information over multiple quantiles of the response makes CQTE especially valuable in cases where the effect of a treatment is not well-modelled by a location shift, even conditionally on the covariates. Nevertheless, the estimation of CQTE is challenging and often depends upon the smoothness of the individual quantiles as a function of the covariates rather than smoothness of the CQTE itself. This is in stark contrast to CATE where it is possible to obtain high-quality estimates which have less dependency upon the smoothness of the nuisance parameters when the CATE itself is smooth. Moreover, relative smoothness of the CQTE lacks the interpretability of smoothness of the CATE making it less clear whether it is a reasonable assumption to make. We combine the desirable properties of CATE and CQTE by considering a new estimand, the conditional quantile comparator (CQC). The CQC not only retains information about the whole treatment distribution, similar to CQTE, but also having more natural examples of smoothness and is able to leverage simplicity in an auxiliary estimand. We provide finite sample bounds on the error of our estimator, demonstrating its ability to exploit simplicity. We validate our theory in numerical simulations which show that our method produces more accurate estimates than baselines. Finally, we apply our methodology to a study on the effect of employment incentives on earnings across different age groups. We see that our method is able to reveal heterogeneity of the effect across different quantiles.