Abstract:Medicare fraud poses a substantial challenge to healthcare systems, resulting in significant financial losses and undermining the quality of care provided to legitimate beneficiaries. This study investigates the use of machine learning (ML) to enhance Medicare fraud detection, addressing key challenges such as class imbalance, high-dimensional data, and evolving fraud patterns. A dataset comprising inpatient claims, outpatient claims, and beneficiary details was used to train and evaluate five ML models: Random Forest, KNN, LDA, Decision Tree, and AdaBoost. Data preprocessing techniques included resampling SMOTE method to address the class imbalance, feature selection for dimensionality reduction, and aggregation of diagnostic and procedural codes. Random Forest emerged as the best-performing model, achieving a training accuracy of 99.2% and validation accuracy of 98.8%, and F1-score (98.4%). The Decision Tree also performed well, achieving a validation accuracy of 96.3%. KNN and AdaBoost demonstrated moderate performance, with validation accuracies of 79.2% and 81.1%, respectively, while LDA struggled with a validation accuracy of 63.3% and a low recall of 16.6%. The results highlight the importance of advanced resampling techniques, feature engineering, and adaptive learning in detecting Medicare fraud effectively. This study underscores the potential of machine learning in addressing the complexities of fraud detection. Future work should explore explainable AI and hybrid models to improve interpretability and performance, ensuring scalable and reliable fraud detection systems that protect healthcare resources and beneficiaries.
Abstract:In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance.
Abstract:Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system.