Abstract:Metric learning algorithms aim to learn a distance function that brings the semantically similar data items together and keeps dissimilar ones at a distance. The traditional Mahalanobis distance learning is equivalent to find a linear projection. In contrast, Deep Metric Learning (DML) methods are proposed that automatically extract features from data and learn a non-linear transformation from input space to a semantically embedding space. Recently, many DML methods are proposed focused to enhance the discrimination power of the learned metric by providing novel sampling strategies or loss functions. This approach is very helpful when both the training and test examples are coming from the same set of categories. However, it is less effective in many applications of DML such as image retrieval and person-reidentification. Here, the DML should learn general semantic concepts from observed classes and employ them to rank or identify objects from unseen categories. Neglecting the generalization ability of the learned representation and just emphasizing to learn a more discriminative embedding on the observed classes may lead to the overfitting problem. To address this limitation, we propose a framework to enhance the generalization power of existing DML methods in a Zero-Shot Learning (ZSL) setting by general yet discriminative representation learning and employing a class adversarial neural network. To learn a more general representation, we propose to employ feature maps of intermediate layers in a deep neural network and enhance their discrimination power through an attention mechanism. Besides, a class adversarial network is utilized to enforce the deep model to seek class invariant features for the DML task. We evaluate our work on widely used machine vision datasets in a ZSL setting.