Abstract:Scene text image super-resolution has significantly improved the accuracy of scene text recognition. However, many existing methods emphasize performance over efficiency and ignore the practical need for lightweight solutions in deployment scenarios. Faced with the issues, our work proposes an efficient framework called SGENet to facilitate deployment on resource-limited platforms. SGENet contains two branches: super-resolution branch and semantic guidance branch. We apply a lightweight pre-trained recognizer as a semantic extractor to enhance the understanding of text information. Meanwhile, we design the visual-semantic alignment module to achieve bidirectional alignment between image features and semantics, resulting in the generation of highquality prior guidance. We conduct extensive experiments on benchmark dataset, and the proposed SGENet achieves excellent performance with fewer computational costs. Code is available at https://github.com/SijieLiu518/SGENet
Abstract:Transformer is beneficial for image denoising tasks since it can model long-range dependencies to overcome the limitations presented by inductive convolutional biases. However, directly applying the transformer structure to remove noise is challenging because its complexity grows quadratically with the spatial resolution. In this paper, we propose an efficient Dual-branch Deformable Transformer (DDT) denoising network which captures both local and global interactions in parallel. We divide features with a fixed patch size and a fixed number of patches in local and global branches, respectively. In addition, we apply deformable attention operation in both branches, which helps the network focus on more important regions and further reduces computational complexity. We conduct extensive experiments on real-world and synthetic denoising tasks, and the proposed DDT achieves state-of-the-art performance with significantly fewer computational costs.