Abstract:This paper introduces a novel iterative algorithm for optimizing pilot and data power control (PC) in cell-free massive multiple-input multiple-output (CF-mMIMO) systems, aiming to enhance system performance under real-time channel conditions. The approach begins by deriving the signal-to-interference-plus-noise ratio (SINR) using a matched filtering receiver and formulating a min-max optimization problem to minimize the normalized mean square error (NMSE). Utilizing McCormick relaxation, the algorithm adjusts pilot power dynamically, ensuring efficient channel estimation. A subsequent max-min optimization problem allocates data power, balancing fairness and efficiency. The iterative process refines pilot and data power allocations based on updated channel state information (CSI) and NMSE results, optimizing spectral efficiency. By leveraging geometric programming (GP) for data power allocation, the proposed method achieves a robust trade-off between simplicity and performance, significantly improving system capacity and fairness. The simulation results demonstrate that dynamic adjustment of both pilot and data PC substantially enhances overall spectral efficiency and fairness, outperforming the existing schemes in the literature.
Abstract:In recent years, the multiple-input multiple-output (MIMO) non-orthogonal multiple-access (NOMA) systems have attracted a significant interest in the relevant research communities. As a potential precoding scheme, the generalized singular value decomposition (GSVD) can be adopted in MIMO-NOMA systems and has been proved to have high spectral efficiency. In this paper, the performance of the GSVD-based MIMO-NOMA communications with Rician fading is studied. In particular, the distribution characteristics of generalized singular values (GSVs) of channel matrices are analyzed. Two novel mathematical tools, the linearization trick and the deterministic equivalent method, which are based on operator-valued free probability theory, are exploited to derive the Cauchy transform of GSVs. An iterative process is proposed to obtain the numerical values of the Cauchy transform of GSVs, which can be exploited to derive the average data rates of the communication system. In addition, the special case when the channel is modeled as Rayleigh fading, i.e., the line-of-sight propagation is trivial, is analyzed. In this case, the closed-form expressions of average rates are derived from the proposed iterative process. Simulation results are provided to validate the derived analytical results.