Abstract:We introduce a sketch-and-solve approach to speed up the Peng-Wei semidefinite relaxation of k-means clustering. When the data is appropriately separated we identify the k-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal k-means value. This lower bound is data-driven; it does not make any assumption on the data nor how it is generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.
Abstract:Many clustering problems enjoy solutions by semidefinite programming. Theoretical results in this vein frequently consider data with a planted clustering and a notion of signal strength such that the semidefinite program exactly recovers the planted clustering when the signal strength is sufficiently large. In practice, semidefinite programs are notoriously slow, and so speedups are welcome. In this paper, we show how to sketch a popular semidefinite relaxation of a graph clustering problem known as minimum bisection, and our analysis supports a meta-claim that the clustering task is less computationally burdensome when there is more signal.