Abstract:This work aims to discuss the current landscape of kinematic analysis tools, ranging from the state-of-the-art in sports biomechanics such as inertial measurement units (IMUs) and retroreflective marker-based optical motion capture (MoCap) to more novel approaches from the field of computing such as human pose estimation and human mesh recovery. Primarily, this comparative analysis aims to validate the use of marker-less MoCap techniques in a clinical setting by showing that these marker-less techniques are within a reasonable range for kinematics analysis compared to the more cumbersome and less portable state-of-the-art tools. Not only does marker-less motion capture using human pose estimation produce results in-line with the results of both the IMU and MoCap kinematics but also benefits from a reduced set-up time and reduced practical knowledge and expertise to set up. Overall, while there is still room for improvement when it comes to the quality of the data produced, we believe that this compromise is within the room of error that these low-speed actions that are used in small clinical tests.
Abstract:In recent years the NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients. To help address the increased waiting lists and shortages of staff, we propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression. The proposed method allows for the measurement and analysis of biomechanics and analyse their clinical significance, in both a cheap and sensitive alternative to the currently available commercial alternatives. These methods and results validate the capabilities of standard RGB cameras in clinical environments to capture motion and show that when compared to alternatives such as depth cameras there is a comparable accuracy in the clinical environment. Biomarker identification using Principal Component Analysis (PCA) allows the reduction of the dimensionality to produce the most representative features from motion data, these new biomarkers can then be used to assess the success of treatment and track the progress of rehabilitation. This was validated by applying these techniques on a case study utilising the exploratory use of local anaesthetic applied on knee pain, this allows these new representative biomarkers to be validated as statistically significant (p-value < 0.05).