Abstract:Neural-networks have seen a surge of interest for the interpretation of seismic images during the last few years. Network-based learning methods can provide fast and accurate automatic interpretation, provided there are sufficiently many training labels. We provide an introduction to the field aimed at geophysicists that are familiar with the framework of forward modeling and inversion. We explain the similarities and differences between deep networks to other geophysical inverse problems and show their utility in solving problems such as lithology interpolation between wells, horizon tracking and segmentation of seismic images. The benefits of our approach are demonstrated on field data from the Sea of Ireland and the North Sea.
Abstract:Geologic interpretation of large seismic stacked or migrated seismic images can be a time-consuming task for seismic interpreters. Neural network based semantic segmentation provides fast and automatic interpretations, provided a sufficient number of example interpretations are available. Networks that map from image-to-image emerged recently as powerful tools for automatic segmentation, but standard implementations require fully interpreted examples. Generating training labels for large images manually is time consuming. We introduce a partial loss-function and labeling strategies such that networks can learn from partially interpreted seismic images. This strategy requires only a small number of annotated pixels per seismic image. Tests on seismic images and interpretation information from the Sea of Ireland show that we obtain high-quality predicted interpretations from a small number of large seismic images. The combination of a partial-loss function, a multi-resolution network that explicitly takes small and large-scale geological features into account, and new labeling strategies make neural networks a more practical tool for automatic seismic interpretation.
Abstract:Detecting a specific horizon in seismic images is a valuable tool for geological interpretation. Because hand-picking the locations of the horizon is a time-consuming process, automated computational methods were developed starting three decades ago. Older techniques for such picking include interpolation of control points however, in recent years neural networks have been used for this task. Until now, most networks trained on small patches from larger images. This limits the networks ability to learn from large-scale geologic structures. Moreover, currently available networks and training strategies require label patches that have full and continuous annotations, which are also time-consuming to generate. We propose a projected loss-function for training convolutional networks with a multi-resolution structure, including variants of the U-net. Our networks learn from a small number of large seismic images without creating patches. The projected loss-function enables training on labels with just a few annotated pixels and has no issue with the other unknown label pixels. Training uses all data without reserving some for validation. Only the labels are split into training/testing. Contrary to other work on horizon tracking, we train the network to perform non-linear regression, and not classification. As such, we propose labels as the convolution of a Gaussian kernel and the known horizon locations that indicate uncertainty in the labels. The network output is the probability of the horizon location. We demonstrate the proposed computational ingredients on two different datasets, for horizon extrapolation and interpolation. We show that the predictions of our methodology are accurate even in areas far from known horizon locations because our learning strategy exploits all data in large seismic images.