Abstract:Facial shadows often degrade image quality and the performance of vision algorithms. Existing methods struggle to remove shadows while preserving texture, especially under complex lighting conditions, and they lack real-world paired datasets for training. We present the Augmented Shadow Face in the Wild (ASFW) dataset, the first large-scale real-world dataset for facial shadow removal, containing 1,081 paired shadow and shadow-free images created via a professional Photoshop workflow. ASFW offers photorealistic shadow variations and accurate ground truths, bridging the gap between synthetic and real domains. Deep models trained on ASFW demonstrate improved shadow removal in real-world conditions. We also introduce the Face Shadow Eraser (FSE) method to showcase the effectiveness of the dataset. Experiments demonstrate that ASFW enhances the performance of facial shadow removal models, setting new standards for this task.




Abstract:Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN