Abstract:3D local feature extraction and matching is the basis for solving many tasks in the area of computer vision, such as 3D registration, modeling, recognition and retrieval. However, this process commonly draws into false correspondences, due to noise, limited features, occlusion, incomplete surface and etc. In order to estimate accurate transformation based on these corrupted correspondences, numerous transformation estimation techniques have been proposed. However, the merits, demerits and appropriate application for these methods are unclear owing to that no comprehensive evaluation for the performance of these methods has been conducted. This paper evaluates eleven state-of-the-art transformation estimation proposals on both descriptor based and synthetic correspondences. On descriptor based correspondences, several evaluation items (including the performance on different datasets, robustness to different overlap ratios and the performance of these technique combined with Iterative Closest Point (ICP), different local features and LRF/A techniques) of these methods are tested on four popular datasets acquired with different devices. On synthetic correspondences, the robustness of these methods to varying percentages of correct correspondences (PCC) is evaluated. In addition, we also evaluate the efficiencies of these methods. Finally, the merits, demerits and application guidance of these tested transformation estimation methods are summarized.
Abstract:Local feature description is a fundamental yet challenging task in 3D computer vision. This paper proposes a novel descriptor, named Statistic of Deviation Angles on Subdivided Space (SDASS), of encoding geometrical and spatial information of local surface on Local Reference Axis (LRA). In terms of encoding geometrical information, considering that surface normals, which are usually used for encoding geometrical information of local surface, are vulnerable to various nuisances (e.g., noise, varying mesh resolutions etc.), we propose a robust geometrical attribute, called Local Minimum Axis (LMA), to replace the normals for generating the geometrical feature in our SDASS descriptor. For encoding spatial information, we use two spatial features for fully encoding the spatial information of a local surface based on LRA which usually presents high overall repeatability than Local Reference Axis (LRF). Besides, an improved LRA is proposed for increasing the robustness of our SDASS to noise and varying mesh resolutions. The performance of the SDASS descriptor is rigorously tested on four popular datasets. The results show that our descriptor has a high descriptiveness and strong robustness, and its performance outperform existing algorithms by a large margin. Finally, the proposed descriptor is applied to 3D registration. The accurate result further confirms the effectiveness of our SDASS method.