Abstract:Large language models (LLMs) have demonstrated impressive capabilities in various tasks using the in-context learning (ICL) paradigm. However, their effectiveness is often compromised by inherent bias, leading to prompt brittleness, i.e., sensitivity to design settings such as example selection, order, and prompt formatting. Previous studies have addressed LLM bias through external adjustment of model outputs, but the internal mechanisms that lead to such bias remain unexplored. Our work delves into these mechanisms, particularly investigating how feedforward neural networks (FFNs) and attention heads result in the bias of LLMs. By Interpreting the contribution of individual FFN vectors and attention heads, we identify the biased LLM components that skew LLMs' prediction toward specific labels. To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads. Extensive experiments across 12 NLP datasets demonstrate that UniBias significantly enhances ICL performance and alleviates prompt brittleness of LLMs.
Abstract:Prompts play a crucial role in guiding the responses of Large Language Models (LLMs). However, the intricate role of individual tokens in prompts, known as input saliency, in shaping the responses remains largely underexplored. Existing saliency methods either misalign with LLM generation objectives or rely heavily on linearity assumptions, leading to potential inaccuracies. To address this, we propose Token Distribution Dynamics (TDD), a \textcolor{black}{simple yet effective} approach to unveil and manipulate the role of prompts in generating LLM outputs. TDD leverages the robust interpreting capabilities of the language model head (LM head) to assess input saliency. It projects input tokens into the embedding space and then estimates their significance based on distribution dynamics over the vocabulary. We introduce three TDD variants: forward, backward, and bidirectional, each offering unique insights into token relevance. Extensive experiments reveal that the TDD surpasses state-of-the-art baselines with a big margin in elucidating the causal relationships between prompts and LLM outputs. Beyond mere interpretation, we apply TDD to two prompt manipulation tasks for controlled text generation: zero-shot toxic language suppression and sentiment steering. Empirical results underscore TDD's proficiency in identifying both toxic and sentimental cues in prompts, subsequently mitigating toxicity or modulating sentiment in the generated content.
Abstract:In this study, we investigate in-context learning (ICL) in document-level event argument extraction (EAE). The paper identifies key challenges in this problem, including example selection, context length limitation, abundance of event types, and the limitation of Chain-of-Thought (CoT) prompting in non-reasoning tasks. To address these challenges, we introduce the Heuristic-Driven Link-of-Analogy (HD-LoA) prompting method. Specifically, we hypothesize and validate that LLMs learn task-specific heuristics from demonstrations via ICL. Building upon this hypothesis, we introduce an explicit heuristic-driven demonstration construction approach, which transforms the haphazard example selection process into a methodical method that emphasizes task heuristics. Additionally, inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations by drawing analogies to known situations, enhancing their adaptability. Extensive experiments show that our method outperforms the existing prompting methods and few-shot supervised learning methods, exhibiting F1 score improvements of 4.53% and 9.38% on the document-level EAE dataset. Furthermore, when applied to sentiment analysis and natural language inference tasks, the HD-LoA prompting achieves accuracy gains of 2.87% and 2.63%, indicating its effectiveness across different tasks.