Abstract:Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
Abstract:Activation steering has emerged as a cost-effective paradigm for modifying large language model (LLM) behaviors. Existing methods typically intervene at the block level, steering the bundled activations of selected attention heads, feedforward networks, or residual streams. However, we reveal that block-level activations are inherently heterogeneous, entangling beneficial, irrelevant, and harmful features, thereby rendering block-level steering coarse, inefficient, and intrusive. To investigate the root cause, we decompose block activations into fine-grained atomic unit (AU)-level activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. Our theoretical and empirical analysis show that heterogeneity arises because different AUs or dimensions control distinct token distributions in LLM outputs. Hence, block-level steering inevitably moves helpful and harmful token directions together, which reduces efficiency. Restricting intervention to beneficial AUs yields more precise and effective steering. Building on this insight, we propose AUSteer, a simple and efficient method that operates at a finer granularity of the AU level. AUSteer first identifies discriminative AUs globally by computing activation momenta on contrastive samples. It then assigns adaptive steering strengths tailored to diverse inputs and selected AU activations. Comprehensive experiments on multiple LLMs and tasks show that AUSteer consistently surpasses advanced baselines while steering considerably fewer activations, demonstrating that steering less achieves more.
Abstract:Understanding complex human activities demands the ability to decompose motion into fine-grained, semantic-aligned sub-actions. This motion grounding process is crucial for behavior analysis, embodied AI and virtual reality. Yet, most existing methods rely on dense supervision with predefined action classes, which are infeasible in open-vocabulary, real-world settings. In this paper, we propose ZOMG, a zero-shot, open-vocabulary framework that segments motion sequences into semantically meaningful sub-actions without requiring any annotations or fine-tuning. Technically, ZOMG integrates (1) language semantic partition, which leverages large language models to decompose instructions into ordered sub-action units, and (2) soft masking optimization, which learns instance-specific temporal masks to focus on frames critical to sub-actions, while maintaining intra-segment continuity and enforcing inter-segment separation, all without altering the pretrained encoder. Experiments on three motion-language datasets demonstrate state-of-the-art effectiveness and efficiency of motion grounding performance, outperforming prior methods by +8.7\% mAP on HumanML3D benchmark. Meanwhile, significant improvements also exist in downstream retrieval, establishing a new paradigm for annotation-free motion understanding.




Abstract:Zero-shot text classification typically relies on prompt engineering, but the inherent prompt brittleness of large language models undermines its reliability. Minor changes in prompt can cause significant discrepancies in model performance. We attribute this prompt brittleness largely to the narrow focus on nexttoken probabilities in existing methods. To address this, we propose Placeholding Parallel Prediction (P3), a novel approach that predicts token probabilities across multiple positions and simulates comprehensive sampling of generation paths in a single run of a language model. Experiments show improved accuracy and up to 98% reduction in the standard deviation across prompts, boosting robustness. Even without a prompt, P3 maintains comparable performance, reducing the need for prompt engineering.
Abstract:Large language models (LLMs) have demonstrated impressive capabilities in various tasks using the in-context learning (ICL) paradigm. However, their effectiveness is often compromised by inherent bias, leading to prompt brittleness, i.e., sensitivity to design settings such as example selection, order, and prompt formatting. Previous studies have addressed LLM bias through external adjustment of model outputs, but the internal mechanisms that lead to such bias remain unexplored. Our work delves into these mechanisms, particularly investigating how feedforward neural networks (FFNs) and attention heads result in the bias of LLMs. By Interpreting the contribution of individual FFN vectors and attention heads, we identify the biased LLM components that skew LLMs' prediction toward specific labels. To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads. Extensive experiments across 12 NLP datasets demonstrate that UniBias significantly enhances ICL performance and alleviates prompt brittleness of LLMs.
Abstract:Prompts play a crucial role in guiding the responses of Large Language Models (LLMs). However, the intricate role of individual tokens in prompts, known as input saliency, in shaping the responses remains largely underexplored. Existing saliency methods either misalign with LLM generation objectives or rely heavily on linearity assumptions, leading to potential inaccuracies. To address this, we propose Token Distribution Dynamics (TDD), a \textcolor{black}{simple yet effective} approach to unveil and manipulate the role of prompts in generating LLM outputs. TDD leverages the robust interpreting capabilities of the language model head (LM head) to assess input saliency. It projects input tokens into the embedding space and then estimates their significance based on distribution dynamics over the vocabulary. We introduce three TDD variants: forward, backward, and bidirectional, each offering unique insights into token relevance. Extensive experiments reveal that the TDD surpasses state-of-the-art baselines with a big margin in elucidating the causal relationships between prompts and LLM outputs. Beyond mere interpretation, we apply TDD to two prompt manipulation tasks for controlled text generation: zero-shot toxic language suppression and sentiment steering. Empirical results underscore TDD's proficiency in identifying both toxic and sentimental cues in prompts, subsequently mitigating toxicity or modulating sentiment in the generated content.




Abstract:In this study, we investigate in-context learning (ICL) in document-level event argument extraction (EAE). The paper identifies key challenges in this problem, including example selection, context length limitation, abundance of event types, and the limitation of Chain-of-Thought (CoT) prompting in non-reasoning tasks. To address these challenges, we introduce the Heuristic-Driven Link-of-Analogy (HD-LoA) prompting method. Specifically, we hypothesize and validate that LLMs learn task-specific heuristics from demonstrations via ICL. Building upon this hypothesis, we introduce an explicit heuristic-driven demonstration construction approach, which transforms the haphazard example selection process into a methodical method that emphasizes task heuristics. Additionally, inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations by drawing analogies to known situations, enhancing their adaptability. Extensive experiments show that our method outperforms the existing prompting methods and few-shot supervised learning methods, exhibiting F1 score improvements of 4.53% and 9.38% on the document-level EAE dataset. Furthermore, when applied to sentiment analysis and natural language inference tasks, the HD-LoA prompting achieves accuracy gains of 2.87% and 2.63%, indicating its effectiveness across different tasks.