Abstract:In the context of visual perception, the optical signal from a scene is transferred into the electronic domain by detectors in the form of image data, which are then processed for the extraction of visual information. In noisy and weak-signal environments such as thermal imaging for night vision applications, however, the performance of neural computing tasks faces a significant bottleneck due to the inherent degradation of data quality upon noisy detection. Here, we propose a concept of optical signal processing before detection to address this issue. We demonstrate that spatially redistributing optical signals through a properly designed linear transformer can enhance the detection noise resilience of visual perception tasks, as benchmarked with the MNIST classification. Our idea is supported by a quantitative analysis detailing the relationship between signal concentration and noise robustness, as well as its practical implementation in an incoherent imaging system. This compute-first detection scheme can pave the way for advancing infrared machine vision technologies widely used for industrial and defense applications.
Abstract:In Time Series Classification (TSC), temporal pooling methods that consider sequential information have been proposed. However, we found that each temporal pooling has a distinct mechanism, and can perform better or worse depending on time series data. We term this fixed pooling mechanism a single perspective of temporal poolings. In this paper, we propose a novel temporal pooling method with diverse perspective learning: Selection over Multiple Temporal Poolings (SoM-TP). SoM-TP dynamically selects the optimal temporal pooling among multiple methods for each data by attention. The dynamic pooling selection is motivated by the ensemble concept of Multiple Choice Learning (MCL), which selects the best among multiple outputs. The pooling selection by SoM-TP's attention enables a non-iterative pooling ensemble within a single classifier. Additionally, we define a perspective loss and Diverse Perspective Learning Network (DPLN). The loss works as a regularizer to reflect all the pooling perspectives from DPLN. Our perspective analysis using Layer-wise Relevance Propagation (LRP) reveals the limitation of a single perspective and ultimately demonstrates diverse perspective learning of SoM-TP. We also show that SoM-TP outperforms CNN models based on other temporal poolings and state-of-the-art models in TSC with extensive UCR/UEA repositories.