Abstract:Existing studies for applying the mixup technique on graphs mainly focus on graph classification tasks, while the research in node classification is still under-explored. In this paper, we propose a novel mixup augmentation for node classification called Structural Mixup (S-Mixup). The core idea is to take into account the structural information while mixing nodes. Specifically, S-Mixup obtains pseudo-labels for unlabeled nodes in a graph along with their prediction confidence via a Graph Neural Network (GNN) classifier. These serve as the criteria for the composition of the mixup pool for both inter and intra-class mixups. Furthermore, we utilize the edge gradient obtained from the GNN training and propose a gradient-based edge selection strategy for selecting edges to be attached to the nodes generated by the mixup. Through extensive experiments on real-world benchmark datasets, we demonstrate the effectiveness of S-Mixup evaluated on the node classification task. We observe that S-Mixup enhances the robustness and generalization performance of GNNs, especially in heterophilous situations. The source code of S-Mixup can be found at \url{https://github.com/SukwonYun/S-Mixup}