Abstract:It has become increasingly important to optimize backpropagation to reduce memory usage and computational overhead. Achieving this goal is highly challenging, as multiple objectives must be considered jointly while maintaining training quality. In this paper, we focus on matrix multiplication, which accounts for the largest portion of training costs, and analyze its backpropagation in detail to identify lightweight techniques that offer the best benefits. Based on this analysis, we introduce a novel method, Hadamard-based Optimized Training (HOT). In this approach, we apply Hadamard-based optimizations, such as Hadamard quantization and Hadamard low-rank approximation, selectively and with awareness of the suitability of each optimization for different backward paths. Additionally, we introduce two enhancements: activation buffer compression and layer-wise quantizer selection. Our extensive analysis shows that HOT achieves up to 75% memory savings and a 2.6 times acceleration on real GPUs, with negligible accuracy loss compared to FP32 precision.
Abstract:The optimization of neural networks in terms of computation cost and memory footprint is crucial for their practical deployment on edge devices. In this work, we propose a novel quantization-aware training (QAT) scheme called noise injection pseudo quantization (NIPQ). NIPQ is implemented based on pseudo quantization noise (PQN) and has several advantages. First, both activation and weight can be quantized based on a unified framework. Second, the hyper-parameters of quantization (e.g., layer-wise bit-width and quantization interval) are automatically tuned. Third, after QAT, the network has robustness against quantization, thereby making it easier to deploy in practice. To validate the superiority of the proposed algorithm, we provide extensive analysis and conduct diverse experiments for various vision applications. Our comprehensive experiments validate the outstanding performance of the proposed algorithm in several aspects.