Abstract:Data for training learning-enabled self-driving cars in the physical world are typically collected in a safe, normal environment. Such data distribution often engenders a strong bias towards safe driving, making self-driving cars unprepared when encountering adversarial scenarios like unexpected accidents. Due to a dearth of such adverse data that is unrealistic for drivers to collect, autonomous vehicles can perform poorly when experiencing such rare events. This work addresses much-needed research by having participants drive a VR vehicle simulator going through simulated traffic with various types of accidental scenarios. It aims to understand human responses and behaviors in simulated accidents, contributing to our understanding of driving dynamics and safety. The simulation framework adopts a robust traffic simulation and is rendered using the Unity Game Engine. Furthermore, the simulation framework is built with portable, light-weight immersive driving simulator hardware, lowering the resource barrier for studies in autonomous driving research. Keywords: Rare Events, Traffic Simulation, Autonomous Driving, Virtual Reality, User Studies
Abstract:Autonomous driving research currently faces data sparsity in representation of risky scenarios. Such data is both difficult to obtain ethically in the real world, and unreliable to obtain via simulation. Recent advances in virtual reality (VR) driving simulators lower barriers to tackling this problem in simulation. We propose the first data collection framework for risky scenario driving data from real humans using VR, as well as accompanying numerical driving personality characterizations. We validate the resulting dataset with statistical analyses and model driving behavior with an eight-factor personality vector based on the Multi-dimensional Driving Style Inventory (MDSI). Our method, dataset, and analyses show that realistic driving personalities can be modeled without deep learning or large datasets to complement autonomous driving research.