LIG Laboratoire d'Informatique de Grenoble
Abstract:Most seismic risk assessment methods focus on estimating the damages to the built environment and the consequent socioeconomic losses without fully taking into account the social aspect of risk. Yet, human behaviour is a key element in predicting the human impact of an earthquake, therefore, it is important to include it in quantitative risk assessment studies. In this study, an interdisciplinary approach simulating pedestrians' evacuation during earthquakes at the city scale is developed using an agent-based model. The model integrates the seismic hazard, the physical vulnerability as well as individuals' behaviours and mobility. The simulator is applied to the case of Beirut, Lebanon. Lebanon is at the heart of the Levant fault system that has generated several Mw>7 earthquakes, the latest being in 1759. It is one of the countries with the highest seismic risk in the Mediterranean region. This is due to the high seismic vulnerability of the buildings due to the absence of mandatory seismic regulation until 2012, the high level of urbanization, and the lack of adequate spatial planning and risk prevention policies. Beirut as the main residential, economic and institutional hub of Lebanon is densely populated. To accommodate the growing need for urban development, constructions have almost taken over all of the green areas of the city; squares and gardens are disappearing to give place to skyscrapers. However, open spaces are safe places to shelter, away from debris, and therefore play an essential role in earthquake evacuation. Despite the massive urbanization, there are a few open spaces but locked gates and other types of anthropogenic barriers often limit their access. To simulate this complex context, pedestrians' evacuation simulations are run in a highly realistic spatial environment implemented in GAMA [1]. Previous data concerning soil and buildings in Beirut [2, 3] are complemented by new geographic data extracted from high-resolution Pleiades satellite images. The seismic loading is defined as a peak ground acceleration of 0.3g, as stated in Lebanese seismic regulations. Building damages are estimated using an artificial neural network trained to predict the mean damage [4] based on the seismic loading as well as the soil and building vibrational properties [5]. Moreover, the quantity and the footprint of the generated debris around each building are also estimated and included in the model. We simulate how topography, buildings, debris, and access to open spaces, affect individuals' mobility. Two city configurations are implemented: 1. Open spaces are accessible without any barriers; 2. Access to some open spaces is blocked. The first simulation results show that while 52% of the population is able to arrive to an open space within 5 minutes after an earthquake, this number is reduced to 39% when one of the open spaces is locked. These results show that the presence of accessible open spaces in a city and their proximity to the residential buildings is a crucial factor for ensuring people's safety when an earthquake occurs.
Abstract:The Internet of Behaviors (IoB) puts human behavior at the core of engineering intelligent connected systems. IoB links the digital world to human behavior to establish human-driven design, development, and adaptation processes. This paper defines the novel concept by an IoB model based on a collective effort interacting with software engineers, human-computer interaction scientists, social scientists, and cognitive science communities. The model for IoB is created based on an exploratory study that synthesizes state-of-the-art analysis and experts interviews. The architecture of a real industry 4.0 manufacturing infrastructure helps to explain the IoB model and it's application. The conceptual model was used to successfully implement a socio-technical infrastructure for a crowd monitoring and queue management system for the Uffizi Galleries, Florence, Italy. The experiment, which started in the fall of 2016 and was operational in the fall of 2018, used a data-driven approach to feed the system with real-time sensory data. It also incorporated prediction models on visitors' mobility behavior. The system's main objective was to capture human behavior, model it, and build a mechanism that considers changes, adapts in real-time, and continuously learns from repetitive behaviors. In addition to the conceptual model and the real-life evaluation, this paper provides recommendations from experts and gives future directions for IoB to become a significant technological advancement in the coming few years.
Abstract:How should computer science and social science collaborate to build a common model? How should they proceed to gather data that is really useful to the modelling? How can they design a survey that is tailored to the target model? This paper aims to answer those crucial questions in the framework of a multidisciplinary research project. This research addresses the issue of co-constructing a model when several disciplines are involved, and is applied to modelling human behaviour immediately after an earthquake. The main contribution of the work is to propose a tool dedicated to multidisciplinary dialogue. It also proposes a reflexive analysis of the enriching intellectual process carried out by the different disciplines involved. Finally, from working with an anthropologist, a complementary view of the multidisciplinary process is given.
Abstract:Social attachment theory states that individuals seek the proximity of attachment figures (e.g. family members, friends, colleagues, familiar places or objects) when faced with threat. During disasters, this means that family members may seek each other before evacuating, gather personal property before heading to familiar exits and places, or follow groups/crowds, etc. This hard-wired human tendency should be considered in the assessment of risk and the creation of disaster management plans. Doing so may result in more realistic evacuation procedures and may minimise the number of casualties and injuries. In this context, a dynamic spatio-temporal analysis of seismic risk is presented using SOLACE, a multi-agent model of pedestrian behaviour based on social attachment theory implemented using the Belief-Desire-Intention approach. The model focuses on the influence of human, social, physical and temporal factors on successful evacuation. Human factors considered include perception and mobility defined by age. Social factors are defined by attachment bonds, social groups, population distribution, and cultural norms. Physical factors refer to the location of the epicentre of the earthquake, spatial distribution/layout and attributes of environmental objects such as buildings, roads, barriers (cars), placement of safe areas, evacuation routes, and the resulting debris/damage from the earthquake. Experiments tested the influence of time of the day, presence of disabled persons and earthquake intensity. Initial results show that factors that influence arrivals in safe areas include (a) human factors (age, disability, speed), (b) pre-evacuation behaviours, (c) perception distance (social attachment, time of day), (d) social interaction during evacuation, and (e) physical and spatial aspects, such as limitations imposed by debris (damage), and the distance to safe areas. To validate the results, scenarios will be designed with stakeholders, who will also take part in the definition of a serious game. The recommendation of this research is that both social and physical aspects should be considered when defining vulnerability in the analysis of risk.
Abstract:This paper proposes a new general approach based on Bayesian networks to model the human behaviour. This approach represents human behaviour with probabilistic cause-effect relations based on knowledge, but also with conditional probabilities coming either from knowledge or deduced from observations. This approach has been applied to the co-simulation of the CO2 concentration in an office coupled with human behaviour.
Abstract:This paper proposes a new general approach based on Bayesian networks to model the human behaviour. This approach represents human behaviour withprobabilistic cause-effect relations based not only on previous works, but also with conditional probabilities coming either from expert knowledge or deduced from observations. The approach has been used in the co-simulation of building physics and human behaviour in order to assess the CO 2 concentration in an office.