Abstract:Electrocardiogram (ECG) recordings have long been vital in diagnosing different cardiac conditions. Recently, research in the field of automatic ECG processing using machine learning methods has gained importance, mainly by utilizing deep learning methods on raw ECG signals. A major advantage of models like convolutional neural networks (CNNs) is their ability to effectively process biomedical imaging or signal data. However, this strength is tempered by challenges related to their lack of explainability, the need for a large amount of training data, and the complexities involved in adapting them for unsupervised clustering tasks. In addressing these tasks, we aim to reintroduce shallow learning techniques, including support vector machines and principal components analysis, into ECG signal processing by leveraging their semi-structured, cyclic form. To this end, we developed and evaluated a transformation that effectively restructures ECG signals into a fully structured format, facilitating their subsequent analysis using shallow learning algorithms. In this study, we present this adaptive transformative approach that aligns R-peaks across all signals in a dataset and resamples the segments between R-peaks, both with and without heart rate dependencies. We illustrate the substantial benefit of this transformation for traditional analysis techniques in the areas of classification, clustering, and explainability, outperforming commercial software for median beat transformation and CNN approaches. Our approach demonstrates a significant advantage for shallow machine learning methods over CNNs, especially when dealing with limited training data. Additionally, we release a fully tested and publicly accessible code framework, providing a robust alignment pipeline to support future research, available at https://github.com/ imi-ms/rlign.
Abstract:In recent years, sensors from smart consumer devices have shown great diagnostic potential in movement disorders. In this context, data modalities such as electronic questionnaires, hand movement and voice captures have successfully captured biomarkers and allowed discrimination between Parkinson's disease (PD) and healthy controls (HC) or differential diagnosis (DD). However, to the best of our knowledge, a comprehensive evaluation of assessments with a multi-modal smart device system has still been lacking. In a prospective study exploring PD, we used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC. This study aims to assess the effect of multi-modal vs. single-modal data on PD vs. HC and PD vs. DD classification, as well as on PD group clustering for subgroup identification. We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
Abstract:Sensors from smart consumer devices have demonstrated high potential to serve as digital biomarkers in the identification of movement disorders in recent years. With the usage of broadly available smartwatches we have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD). In total, 504 participants, including PD patients, differential diagnoses (DD) and healthy controls (HC), were captured with a comprehensive system utilizing two smartwatches and two smartphones. To the best of our knowledge, this study provided the largest PD sample size of two-hand synchronous smartwatch measurements. To establish a future easy-to use home-based assessment system in PD screening, we systematically evaluated the performance of the system based on a significantly reduced set of assessments with only one-sided measures and assessed, whether we can maintain classification accuracy.