https://imigitlab.uni-muenster.de/published/exchangeai .
Electrocardiogram data, one of the most widely available biosignal data, has become increasingly valuable with the emergence of deep learning methods, providing novel insights into cardiovascular diseases and broader health conditions. However, heterogeneity of electrocardiogram formats, limited access to deep learning model weights and intricate algorithmic steps for effective fine-tuning for own disease target labels result in complex workflows. In this work, we introduce ExChanGeAI, a web-based end-to-end platform that streamlines the reading of different formats, pre-processing, visualization and custom machine learning with local and privacy-preserving fine-tuning. ExChanGeAI is adaptable for use on both personal computers and scalable to high performance server environments. The platform offers state-of-the-art deep learning models for training from scratch, alongside our novel open-source electrocardiogram foundation model CardX, pre-trained on over one million electrocardiograms. Evaluation across three external validation sets, including an entirely new testset extracted from routine care, demonstrate the fine-tuning capabilities of ExChanGeAI. CardX outperformed the benchmark foundation model while requiring significantly fewer parameters and lower computational resources. The platform enables users to empirically determine the most suitable model for their specific tasks based on systematic validations.The code is available at