Abstract:The Polar Mellin Transform (PMT) is a well-known technique that converts images into shift, scale and rotation invariant signatures for object detection using opto-electronic correlators. However, this technique cannot be properly applied when there are multiple targets in a single input. Here, we propose a Segmented PMT (SPMT) that extends this methodology for cases where multiple objects are present within the same frame. Simulations show that this SPMT can be integrated into an opto-electronic joint transform correlator to create a correlation system capable of detecting multiple objects simultaneously, presenting robust detection capabilities across various transformation conditions, with remarkable discrimination between matching and non-matching targets.
Abstract:Opto-electronic joint transform correlators (JTCs) use a focal plane array (FPA) to detect the joint power spectrum (JPS) of two input images, projecting it onto a spatial light modulator (SLM) to be optically Fourier transformed. The JPS is composed of two self-intensities and two conjugate-products, where only the latter produce the cross-correlation. However, the self-intensity terms are typically much stronger than the conjugate-products, consuming most of the available bit-depth on the FPA and SLM. Here we propose and demonstrate, through simulation and experiment, a balanced opto-electronic JTC that electronically processes the JPS to remove the self-intensity terms, thereby enhancing the quality of the cross-correlation result.
Abstract:Hybrid Opto-electronic correlators (HOC) overcome many limitations of all-optical correlators (AOC) while maintaining high-speed operation. However, neither the OEC nor the AOC in their conventional configurations can detect targets that have been rotated or scaled relative to a reference. This can be addressed by using a polar Mellin transform (PMT) pre-processing step to convert input images into signatures that contain most of the relevant information, albeit represented in a shift, scale, and rotation invariant (SSRI) manner. The PMT requires the use of optics to perform the Fourier transform and electronics for a log-polar remapping step. Recently, we demonstrated a pipelined architecture that can perform the PMT at a speed of 720 frames per second (fps), enabling the construction of an efficient opto-electronic PMT pre-processor. Here, we present an experimental demonstration of a complete HOC that implements this technique to achieve real-time and ultra-fast SSRI target recognition for space situational awareness. For this demonstration, we make use of a modified version of the HOC that makes use of Joint Transform Correlation , thus rendering the system simpler and more compact.
Abstract:Space situational awareness demands efficient monitoring of terrestrial sites and celestial bodies, necessitating advanced target recognition systems. Current target recognition systems exhibit limited operational speed due to challenges in handling substantial image data. While machine learning has improved this scenario, highresolution images remain a concern. Optical correlators, relying on analog processes, provide a potential alternative but are hindered by material limitations. Recent advancements in hybrid opto-electronic correlators (HOC) have addressed such limitations, additionally achieving shift, scale, and rotation invariant (SSRI) target recognition through use of the polar Mellin transform (PMT). However, there are currently no techniques for obtaining the PMT at speeds fast enough to take advantage of the inherent speed of the HOC. To that end, we demonstrate an optoelectronic PMT pre-processor that can operate at record-breaking millisecond frame rates using commercially available components for use in an automated SSRI HOC image recognition system for space situational awareness.
Abstract:The hybrid opto-electronic correlator (HOC) architecture has been shown to be able to detect matches in a shift, scale, and rotation invariant (SSRI) manner by incorporating a polar Mellin transform (PMT) pre-processing step. Here we demonstrate the design and use of a thick holographic memory disc (HMD) for high-speed SSRI correlation employing an HOC. The HMD was written to have 1,320 stored images, including both unprocessed images and their PMTs. We further propose and demonstrate a novel approach whereby the HOC inputs are spatially shifted to produce correlation signals without requiring stabilization of optical phases, yielding results that are in good agreement with the theory. Use of this approach vastly simplifies the design and operation of the HOC, while improving its stability significantly. Finally, a real-time opto-electronic PMT pre-processor utilizing an FPGA is proposed and prototyped, allowing for the automatic conversion of images into their PMTs without additional processing delay.