Space situational awareness demands efficient monitoring of terrestrial sites and celestial bodies, necessitating advanced target recognition systems. Current target recognition systems exhibit limited operational speed due to challenges in handling substantial image data. While machine learning has improved this scenario, highresolution images remain a concern. Optical correlators, relying on analog processes, provide a potential alternative but are hindered by material limitations. Recent advancements in hybrid opto-electronic correlators (HOC) have addressed such limitations, additionally achieving shift, scale, and rotation invariant (SSRI) target recognition through use of the polar Mellin transform (PMT). However, there are currently no techniques for obtaining the PMT at speeds fast enough to take advantage of the inherent speed of the HOC. To that end, we demonstrate an optoelectronic PMT pre-processor that can operate at record-breaking millisecond frame rates using commercially available components for use in an automated SSRI HOC image recognition system for space situational awareness.