The hybrid opto-electronic correlator (HOC) architecture has been shown to be able to detect matches in a shift, scale, and rotation invariant (SSRI) manner by incorporating a polar Mellin transform (PMT) pre-processing step. Here we demonstrate the design and use of a thick holographic memory disc (HMD) for high-speed SSRI correlation employing an HOC. The HMD was written to have 1,320 stored images, including both unprocessed images and their PMTs. We further propose and demonstrate a novel approach whereby the HOC inputs are spatially shifted to produce correlation signals without requiring stabilization of optical phases, yielding results that are in good agreement with the theory. Use of this approach vastly simplifies the design and operation of the HOC, while improving its stability significantly. Finally, a real-time opto-electronic PMT pre-processor utilizing an FPGA is proposed and prototyped, allowing for the automatic conversion of images into their PMTs without additional processing delay.