Abstract:This paper proposes a novel learning based high-dynamic-range (HDR) reconstruction method using a polarization camera. We utilize a previous observation that polarization filters with different orientations can attenuate natural light differently, and we treat the multiple images acquired by the polarization camera as a set acquired under different exposure times, to introduce the development of solutions for the HDR reconstruction problem. We propose a deep HDR reconstruction framework with a feature masking mechanism that uses polarimetric cues available from the polarization camera, called Deep Polarimetric HDR Reconstruction (DPHR). The proposed DPHR obtains polarimetric information to propagate valid features through the network more effectively to regress the missing pixels. We demonstrate through both qualitative and quantitative evaluations that the proposed DPHR performs favorably than state-of-the-art HDR reconstruction algorithms.
Abstract:The recent development of the on-chip micro-polarizer technology has made it possible to acquire four spatially aligned and temporally synchronized polarization images with the same ease of operation as a conventional camera. In this paper, we investigate the use of this sensor technology in high-dynamic-range (HDR) imaging. Specifically, observing that natural light can be attenuated differently by varying the orientation of the polarization filter, we treat the multiple images captured by the polarization camera as a set captured under different exposure times. In our approach, we first study the relationship among polarizer orientation, degree and angle of polarization of light to the exposure time of a pixel in the polarization image. Subsequently, we propose a deep snapshot HDR reconstruction framework to recover an HDR image using the polarization images. A polarized HDR dataset is created to train and evaluate our approach. We demonstrate that our approach performs favorably against state-of-the-art HDR reconstruction algorithms.